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Abstract—Optical properties of generalized dielectric Fibonacci
multilayer generated by the rule Sl+1 = Sn

l S
m
l−1 with a pair of positive

integers m and n were studied. The initial generations S1 and S2 are
taken as S1 = H and S2 = L where H and L are two elementary
layers with refractive indices nL = 1.45 and nH = 2.3, respectively.
In the following numerical investigation, we chose SiO2 (L) and TiO2

(H) as two elementary layers. We use the so-called “antitrace” map
to determine the transmission spectra of the structures. Based on
the representation of the transmittance spectra in the visible range an
analysis depending on the pair (n,m) is presented. We show that the
whole structure Sn

l S
m
l−1 has an interesting application for well selection

pairs (m,n) values.

1. INTRODUCTION

Photonic crystals (PCs) have attracted much attention because they
are interesting objects of study in physics and because of their
potential applications to various optical devices such as micro optical
circuits and single mode light-emitting diodes [1–4]. It is known
that three-dimensional (3D) photonic crystals can achieve a complete
photonic bandgap (PBG). Unfortunately, there are still two formidable
difficulties in applying 3D photonic crystals as devices: One is making
3D periodic dielectric structures with a feature size comparable to the
wavelength of visible light; the other is achieving dielectric contrasts
to obtain a forbidden gap that overlaps in all directions within
the Brillouin zone. Compared with the 3D case, one-dimensional
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(1D) photonic crystals, i.e., dielectric multilayers, are much easier to
fabricate.

In recent years, there has been much interest in the physics and
applications of one-dimensional spatially periodic, quasiperiodic and
random photonic bandgap (PBG) structures [5, 6]. Quasi-periodic
systems can be considered as suitable models to describe the transition
from the perfect periodic structure [7] to the random structure [8, 9].
If made from dielectric material, the resulting structure has interesting
optical properties. The most important and well-known quasi-periodic
structure is the Fibonacci sequence (FS) [10, 11]. Quasicrystals
are non-periodic structures that are constructed following a simple
deterministic generation rule [12]. If made from dielectric material, the
resulting structure has interest optical properties. Quasicrystals of the
Fibonacci type, for instance, exhibit an energy spectrum that consists
of a self-similar Cantor set with zero Lebesgue measure [13]. The
transmission spectrum of a Fibonacci system also contains forbidden
frequency regions called pseudo-bandgaps similar to the bandgaps of a
photonic crystal [14, 15]. In the frequency regime outside the Fibonacci
band gaps, the light waves are critically localized.

This study deals with the optical properties of the quasi-periodic
one-dimensional multilayer. The quasi-crystal is constructed by
applying an iterative recipe, called generating rule, to a set of “building
blocks” (layers with defined thickness and refractive index). The
Fibonacci structure is the most studied quasi-crystal because of its
simple generating recipe. In this work we use the generated Fibonacci
sequence constructed by the rule Fl+1 = Fn

l F
m
l−1 with a pair of positive

integer’s m and n, for normal incidence in the visible spectral range
[0.4, 0.8]µm.

2. MODEL AND FORMALISM

There are many kinds of generalized Fibonacci sequences FSs (n,m).
Here, we study a system of a Fibonacci multilayer of two materials H
and L as follows (Fig. 1):

F1 = H, F2 = L

Fl+1 = Fn
l F

m
l−1, for l ≥ 3,

with arbitrary integers n and m. It was assumed that:
• Incident wave has S polarization
• Optical thicknesses of H and L layers are equal
• Neither reflection or refraction occurs on the interfaces between

the system and external media
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Figure 1. The model of the study configuration Fibonacci sequence.

The corresponding transfer matrices Sl are written as:

S1 = P(air/L)PLP(L/air)

S2 = P(air/H)PHP(H/air)

∀ l ≥ 3 Sl+1 = Sn
l S

m
l−1 (1)

where P(air/L) (P(L/air)) stands for the propagation matrix from the
air (L) to L (the air) and PL is the propagation matrix through single
layer L.

In the same way, P(air/H) (P(H/air)) stands for the propagation
matrix from the air (H) to H (the air) and PH is the propagation
matrix through the single layer H.

These transfer matrices are given by:

P(air/L) = P−1
(L/air) =

(
1 0
0 1/nL

)
PL =

(
cos(δL) − sin(δL)
sin(δL) cos(δL)

)

P(air/H) = P−1
(H/air) =

(
1 0
0 1/nH

)
PH =

(
cos(δH) − sin(δH)
sin(δH) cos(δH)

)

where δH(L) = knH(L)dH(L), nH(L) is the refractive index of media
H(L), dH(L) is the layer thicknesses, and k is the wave number in
vacuum. Generally, we choose appropriate layer thicknesses dH and
dL to make nHdH = nLdL. Then we have δL = δH = δ.

The transmission coefficient is given by [16]:

Tl =
4

|Si|2 + 2

where |Si|2 is the sum of squares of the four elements of the matrix Sl,
since the transfer matrix is unimodular, the transmission coefficient
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can be written as:

Tl =
4

x2
l + y2

l

where xl and yl denote respectively the trace and antitrace of the
transfer matrix Sl.

Given a matrix A =
(

A11 A12

A21 A22

)
, the antitrace of A is defined

as yA = A21 −A12.
The nth power of a unimodular 2 × 2 matrix A is given by:

An = Un(xA)A− Un−1(xA)I (2)

where I is the unit matrix and

Un(xA) =
λn

+ − λn
−

λ+ − λ−
, λ± =

xA ±
√
x2

A − 4

2

where xA and λ± denote the trace and the eigen values of A,
respectively.

Using Eqs. (1) and (2), we can write the recursion relation of the
transfer matrix as:

Sl+1 = (Un(xl)Sl − Un−1(xl)I) · (Um(xl−1)Sl−1−Um−1(xl−1)I) (3)

So, to study the antitrace maps, we need the following identity for two
unimodular transfer matrices H and L:

Y(HL) = XL · YH + XH · YL − Y(LH) (4)

The recursion relation of the trace and the antitrace map, can be
written as (for l ∈ IN):

Xl+1 = Un(Xl) · Um(Xl−1) · Vl

−Un−1(Xl) · Um+1(Xl−1) − Un+1(Xl) · Um−1(Xl−1)
Vl+1 = Un+1(Xl) · Um(Xl−1) · Vl

−Un(Xl) · Um+1(Xl−1) − Un+2(Xl) · Um−1(Xl−1)
Yl+1 = Un(Xl) · Um(Xl−1) ·Wl

−Un−1(Xl) · Um(Xl−1) · Yl−1 − Un(Xl) · Um−1(Xl−1) · Yl

Wl+1 = Xl+1 · Yl + Un−1(Xl) · Um(Xl−1) ·Wl

−Un−2(Xl) · Um(Xl−1) · Yl−1 − Un−1(Xl) · Um−1(Xl−1) · Yl
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where Vl = trace (Sl Sl−1) and Wl = antitrace (Sl Sl−1).
Consequently, the trace and antitrace map are completely

determined by these relations. The forms of trace and antitrace maps
are easy to be obtained and are convenient for application. If we know
the initial conditions, the transmission coefficients can be determined
from the trace and antitrace map.

3. RESULTS AND DISCUSSION

The factors influencing the system response are the choice of first two
iterations A1 and A2, the choice of the parameter m, the choice of the
parameter n and the choice of the iteration l. In the following numerical
investigation, we chose SiO2 (L) and TiO2 (H) as two elementary
layers, with refractive indices nL = 1.45 and nH = 2.3, respectively.

3.1. The Number and Nature of the Layers

For a quasiperiodic multilayer ordered according to the generalized
Fibonacci, in the lth iteration, the total number of layers (Fl), the
number of high indices’ layers (Hl) and the number of low indices’
layers (Ll) are determined by (for l ∈ IN):

Fl = −(n− 2) −
√
n2 + 4m

2 ·
√
n2 + 4m

(
n +

√
n2 + 4m
2

)l−1

+
(n− 2) +

√
n2 + 4m

2.
√
n2 + 4m

(
n−

√
n2 + 4m
2

)l−1

(5)

Hl =
1√

n2+4m

(
n+

√
n2+4m
2

)l−1

− 1√
n2+4m

(
n−

√
n2+4m
2

)l−1

(6)

Ll =
m√

n2+4m

(
n+

√
n2+4m
2

)l−2

− m√
n2+4m

(
n−

√
n2+4m
2

)l−2

(7)

In the iteration l ≥ 3, the system contains Fl(= n · Fl−1 + m · Fl−2)
dielectric layer. We consider jl ∈< 1, Fl >, the refraction indices in
the jth layer:

- If jl ∈< 1, n · Fl−1 > then it exists jl−1 ∈< 1, Fl−1 > such as
jl ≡ jl−1[Fl−1], then n[jl] = n[jl−1]
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- If j ∈< n · Fl−1 + 1, Fl >, it exists jl−2 ∈< 1, Fl−2 > such as
(j − n · Fl−1) ≡ jl−2[Fl−2], then n[j] = n[jl−2]
If n[jl] = n[jl−1], the same calculation is redone with jl−1 at the
iteration (l − 1)
If n[jl] = n[jl−2], the same calculation is redone with jl−1 at the
iteration (l − 2)

3.2. Effect of the Iteration

Independently of the obtained spectra nature which will be discussed
later, we noticed that when the number of iteration (l) increases, the
spectra’s bands become narrower and more and more cumbersome at
all the couple (n,m). For the Sections 3.3 and 3.4 we choose the 6th

generation.

3.3. The Effect of the m Variation with n Fixed to 1

The obtained transmission spectra show that the optical properties of
the system depend on the parity of m.

3.3.1. Case m Even

The various spectra (Fig. 2) present bands of oscillations, one of which
is centred always in λ0 = 0.5µm. These bands narrow and the number
of oscillations increase as m increases. Besides, the number of the
peaks around λ0 is governed approximately by a simple linear function
according to m by (Fig. 3):

N = 1.27273 + 1.34545 ·m

This allows us to predict the number of peaks and without making
calculation which becomes complex for the great m values.

On the other hand, the transmission bandwidth ∆λ around λ0 =
0.5µm is decreasing as an exponential function with m increasing and
then it tends to be constant while m takes great values (Fig. 4). By
increasing the m number, more bands, which present oscillations and
gradually emerge (shown in Figs. 2(b)–(d)).

3.3.2. Case m Odd

The various spectra (Fig. 5) present around λ0 = 0.5µm a spectral
band with weak transmission value. It is clear from the figure that the
transmission band tends towards zero as m increases.

On the other hand, the reflection bandwidth ∆λ around λ0 =
0.5µm is decreasing as an exponential function with m increasing and
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Figure 2. Transmission properties of a quarter-wave stack of the FS
(1,m) system for the 6th generation at normal incidence as a function
of wavelength for (a) m = 4; (b) m = 6; (c) m = 12; (d) m = 16.

then it tends to be constant while m takes great values (Fig. 6).
Besides, more bands which present oscillations gradually emerge
(shown in Figs. 5(b)–(d)), by increasing the m number.

According to Figs. 2 and 5, there are indeed multiples bands in
the generalized dielectric Fibonacci dielectric multilayer, but the band
positions depend with the parity of the m number.

The results mean that under the special conditions given above,
the system around λ0 = 0.5µm shows a switchlike property with “off”
for the odd generation and “on” for the even generation.

3.4. The Effect of the n Variation with m Fixed to 1

To study the transmission properties, we classify the FSs (n, 1) to two
families: the even family with n = 2m and the odd one with n = 2m+1,
m = 0, 1, 2, 3, . . . .
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Figure 3. Behaviour of the peak numbers around λ0 = 0.5µm versus
m odd number for n = 1.
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Figure 4. Plots of the bandwidth around the reference wavelength λ0

versus m odd number for n = 1.
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Figure 5. Transmission properties of a quarter-wave stack of the FS
(1,m) system for the 6th generation at normal incidence as a function
of wavelength for (a) m = 3; (b) m = 7; (c) m = 9; (d) m = 13.

3.4.1. Case n Even

The system responses (Fig. 7) show a multitude of fixed bands, which
increased and contracted by n increasing (see Fig. 7(e)). We note that
for n ≥ 4 we can count around λ0 the number of peaks in the bands
at the 6th iteration which obeys to the following law:

N6(n) = n2 · (n− 1)

3.4.2. Case n Odd

The measured transmission spectra are shown in Fig. 8 for different
odd numbers. The spectra show a multitude of peaks in particular
around λ0. The number of peaks around λ0 can be determined at the
6th iteration according to n by the following law:

N6(n) = n2

As we can see from the Fig. 8, the peaks bands increase and contracted
with n increasing. It appears from Fig. 8(c) that no peaks are observed
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Figure 6. Plots of the bandwidth around the reference wavelength λ0

versus m an even number for n = 1.

but in reality the peaks are contracted in a weak spectral range
and Figs. 8(e) and 8(f) confirm this observation. So, quasiperiodic
multilayers ordered according to the generalized Fibonacci for m = 1
and n odd are polychromatic filters in the field of the visible and for
which performances increase when n increases. These filters present the
advantage to have a very close optical windows as n increases. However
the width of the total band around λ0 decreases when n increase and
peaks get closer some of the others.

3.4.3. Autosimilarity

It is known that the sequences FS (m,n) with n > 1 are quasiperiodic
and those with n > 2 are always aperiodic [10]. Indeed, the fractal
aspect is verified for these systems for m = 1 and n variable. (Fig. 10).
Or according to Lavrinenko and al [11], the determination of the
wavelength domain for which the transmission spectra of the system
at the iteration l is similar to that of at the iteration (l − 1) is
not unpredictable. Indeed, they demonstrated that for multilayers’
systems with Cantor distribution which are fractal structures, and in
a centred domain around λ0, the transmission spectra of the system
at the iteration (N − 1) with a width domain ∆N−1 is similar in that
of at the itéraion N on a width domain ∆N which equal to ∆N−1/G,
with G is the report of the layers numbers of two consecutive iterations
(For example G = 3 for systems with distribution of classic Cantor).
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Figure 7. Transmission properties of a quarter-wave stack of the
FS (n, 1) system for the 6th generation at normal incidence as a function
of wavelength for (a) n = 2; (b) n = 6; (c) n = 10; (d) n = 12; (e) case
n = 12 for the spectral range around the reference wavelength λ0.

By analogy, we define d(n,m) as being the limit of the report of
the layers number of two consecutive iterations which given by:

d(n,m) = lim
l→+∞

Fl+1

Fl
=

n +
√
n2 + 4m
2
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Figure 8. Transmission properties of a quarter-wave stack of the
FS (n, 1) system for the 6th generation at normal incidence as a function
of wavelength for (a) n = 3; (b) n = 5; (c) n = 9; (d) n = 11; (e) case
n = 9 for the spectral range around the reference wavelength λ0; (f)
case n = 9 for the spectral range around the wavelength 0.4996µm.
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Figure 9. Autosimilarity aspect of transmission spectra of the
generalized Fibonacci sequence FS (4, 1). Scalability can be seen
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(g).
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For example for n = 4 and m = 1 than d(4, 1) = 4.23.
So, If we scale the part of the spectral range centered at the

reference wavelength λ0 = 0.5µm in a (d, l)-structure spectrum by
a factor of d, it will match the spectrum of (d, l − 1) almost perfectly
(see Fig. 9). If the scaling factor is d2, we will obtain an l-2th generation
spectrum, and so on, up to l = 0. We have called this property spectral
scalability, found it to be inherent to all Cantor Fibonacci structures.

This scalability directly results from self-similarity of the
structures themselves which obey the same scaling relations, i.e., a
(d, l)-structure contains fragments which, scaled by dn, match the
structures of previous generations. This way, a direct correlation
between geometrical and spectral properties of Fibonacci multilayers
is established.

4. CONCLUSION

In conclusion, we have investigated for normal incidence of light
the transmission properties through the generalized Fibonacci
quasiperiodic multilayers FS (m,n) and found some interesting results.
We established direct correlation between geometrical and spectral
properties of generalized Fibonacci multilayer structures. Three
interesting physical situations described in the sections 3.3 and 3.4
have been considered. The first proposed approach for n > 1 and
m = 1 can be applied in design of optical devices or instruments
like polychromatic filters. The second and when n = 1 and m is
an odd number the FS (m = 2p, 1) multilayers displays a switchlike
property (on-off-on-off- . . . ) which can be applied as an optical
switching. Finally,we observe for FS (n, 1) a scaling of the transmission
coefficient with increasing Fibonacci sequences and the value n at
quarter-wavelength optical thicknesses. This behaviour is in good
agreement with theory and can be considered as experimental evidence
for the localization of the light waves.
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