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Abstract—When one uses integral equations to determine the input
admittance of dipole antennas, one must choose between two kernels,
the exact and the approximate kernel, and also between (at least)
two types of feed, the delta-function generator and the frill generator.
For dipole antennas of infinite length, we investigate—analytically
and numerically—the similarities and differences between the various
admittance values. Particular emphasis is placed on the fact, discussed
in detail in recent publications, that certain combinations lead to non-
solvable integral equations.
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1. INTRODUCTION

When applying moment methods to the Hallén-type equation for a
cylindrical dipole of finite length and radius a, one must choose between
the exact and the approximate (also called reduced) kernel. One must
also choose between the delta-function generator [1] and more complex
feeding structures, the most well-known of which is the frill generator
of inner (outer) radius a (b) [2]. Thus, there are four possible integral
equations. On these choices, see also the standard textbooks [3] and [4].
One must also choose a particular version of the method of moments
(i.e. choose the basis and testing functions), as well as the number
of basis/testing functions to be used. Generally speaking, the various
choices lead to different values of input admittance.

As discussed in detail in refs. [1] and [2] (see also [5–7]) two of
the above four integral equations, those involving the approximate
kernel, lead to non-solvable integral equations. While use of
the approximate kernel is widespread, the rather peculiar issue of
insolvability accentuates the problem of choosing the basis/testing
functions, as well as their number. When their number is very large,
for example, erroneous oscillations occur near the driving point and/or
near the ends of the antenna [1, 2]. (Such oscillations do not occur in
the case of the exact kernel; certain considerations that help one choose
the number of basis functions in that case are contained in [8].)
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A basic tool employed in the aforementioned references [1] and [2]
is the antenna of infinite length. There are still four choices of Hallén-
type equations, only one (not two) of which is non-solvable. The three
solvable integral equations can be solved explicitly using a Fourier
transform, and the solutions take the form of convergent integrals.
Furthermore, each convergent integral is also the solution to the
corresponding integral equation of the Pocklington type. When applied
to the non-solvable integral equation, on the other hand, the Fourier-
transform method leads to a divergent integral. With the infinite
antenna, therefore, one can simply use explicit solutions and need not
worry about choosing the particular basis and testing functions, nor
their number; furthermore, there is no difference between an integral
equation of the Hallén type and its corresponding Pocklington-type
counterpart.

In the present paper, we investigate the similarities and difference
between admittance values obtained from the three solvable integral
equations. As one might expect, separate investigations for input
conductance and susceptance are required. Perhaps unexpectedly, it is
possible to define an input conductance (but not a susceptance) for the
non-solvable case; this conductance is also investigated in the present
paper.

Studies of infinite-length structures are common in electromag-
netics, and infinite-antenna models have been extensively studied by
many authors. See, for example, [9–22]; additional references, as well
as several reasons motivating such studies are given in [20]. The moti-
vation, purpose and methods of the present paper are different from the
above-mentioned references: The specific starting points of the present
study are the infinite-antenna results of [1] and [2].

Our time dependence is e−i2πft, where k = 2π/λ = 2πf/c.

2. FOURIER TRANSFORMS OF THE KERNELS

Fourier transforms—in which the spatial variable z is transformed to
the Fourier variable ζ—are used extensively in this paper. For real ζ,
the Fourier transforms of the approximate and exact kernels are [2]

K̄ap(ζ, a) =




i

4
H

(1)
0 (a

√
k2 − ζ2), if |ζ| < k

1
2π

K0(a
√

ζ2 − k2), if |ζ| > k,

(1)
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and

K̄ex(ζ, a) =




i

4
J0(a

√
k2 − ζ2)H(1)

0 (a
√

k2 − ζ2), if |ζ| < k

1
2π

I0(a
√

ζ2 − k2)K0(a
√

ζ2 − k2), if |ζ| > k.

(2)

For brevity, these Fourier transforms will be referred to simply as
“kernels.” For each kernel, the top (|ζ| < k) and bottom (|ζ| > k)
formulas are analytic continuations of one another. Both kernels are
real when ζ is real and |ζ| > k. Finally, the branch cut originating
from ζ = k (ζ = −k) lies in the upper-half (lower-half) ζ-plane [5].

For large, positive ζ, the asymptotic behavior of the kernels is
found from the large-argument formulas for K0 and I0K0 [23, 9.7.2,
9.7.5] to be

K̄ap(ζ, a) ∼
1√
8πa

e−aζ

√
ζ

, as ζ → +∞, (3)

and
K̄ex(ζ, a) ∼

1
4πa

1
ζ
, as ζ → +∞. (4)

We will also be interested in the asymptotic behavior of the kernels
as ζ → k. Throughout this paper, when discussing this limit we assume
that ζ remains in the lower-half plane so that ζ approaches k from
below. From the small-argument formula for H

(1)
0 [23, 9.1.3, 9.1.12,

9.1.13] or, alternatively, from the corresponding formula for K0 [23,
9.6.12, 9.6.13], it is seen that

K̄ap(ζ, a) = − 1
4π

ln(ζ − k) + O(1), as ζ → k. (5)

For the same reasons, an identical relation holds for the exact kernel

K̄ex(ζ, a) = − 1
4π

ln(ζ − k) + O(1), as ζ → k. (6)

3. EXPLICIT FORMULAS FOR THE CURRENTS

The purpose of this section is to give the explicit formulas for
the currents. These formulas are integrals, and their convergence
properties are discussed.
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3.1. Delta-Function Generator

Consider the case of the delta-function generator first. With the exact
kernel, the current I

(∞)
ex,δ (z) satisfies an integral equation of the Hallén

type, as well as one of the Pocklington type. The explicit solution to
either equation is [1]

I
(∞)
ex,δ (z) =

ikV

πζ0

∫ ∞

0,(k)

cos ζz
(k2 − ζ2)K̄ex(ζ, a)

dζ, (7)

where ζ0 = 376.73 Ohms, and where the notation
∫ ∞
0,(k) means that

the integration path passes below the singularity at ζ = k in the
complex ζ-plane, while starting at 0 and ending at +∞ (note that
there is a typographical error in the relevant [1, eqn. (15)]). Bypassing
ζ = k is necessary because of (6), which shows that the integrand
has a non-integrable singularity at ζ = k. By (4), eqn. (7) defines an
integral which converges (conditionally) for all real z except z = 0—
more on this later. In Appendix A a useful, alternative representation
for I

(∞)
ex,δ (z)—as a Cauchy Principal Value integral—is obtained.
The situation is completely different for the approximate kernel

[1, 5]: If one replaces K̄ex(ζ, a) by K̄ap(ζ, a) in (7), one obtains an
integral which, because of (3), diverges for all real z. Thus, with
the approximate kernel (still with the delta-function generator), the
integral equation is non-solvable, and there is no well-defined current.

3.2. Frill Generator

Similarly, with the exact kernel/frill generator combination, one has
an explicit solution I

(∞)
ex,fr(z). Although “most” integral equations

that use the approximate kernel are non-solvable [2], the combination
infinite antenna/approximate kernel/frill generator surprisingly yields
a solvable integral equation. If the solution is I

(∞)
ap,fr(z), then, in concise

notation, the two solutions can be written together as [2]

I
(∞)
ex/ap,fr(z) =

2ikV
ζ0 ln(b/a)

∫ ∞

0,(k)

[
K̄ap(ζ, a) − K̄ap(ζ, b)

]
cos ζz

(k2 − ζ2)K̄ex/ap(ζ, a)
dζ, (8)

where, in the denominator of the integrand, one uses K̄ex(ζ, a) to
find I

(∞)
ex,fr(z) and K̄ap(ζ, a) to find I

(∞)
ap,fr(z). Note that the terms in

the numerator of the integrand always involve the approximate kernel;
these terms originate from the right-hand side of the integral equation.
Once again, there is a non-integrable singularity at ζ = k which is
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bypassed in the usual manner. We note that a principal-value integral
representation—similar to (A3) of Appendix A—is possible once again.
Finally, it is worth pointing out something not mentioned in [2]: With
the approximate kernel, the right-hand side of eqn. (8) appears, in a
different context, in [13, eqn. (26)].

4. EXPLICIT FORMULAS FOR INPUT ADMITTANCE

There are four combinations of kernel and feed. For all combinations
leading to a well-defined input conductance or susceptance, we now
give the relevant formula(s). When a particular combination does not
lead to a well-defined input conductance or susceptance, we give the
reason.

4.1. Exact Kernel/Delta-Function Generator

For the exact kernel/delta-function generator combination, as one
approaches the driving point, the imaginary part of I(∞)

ex,δ (z)/V becomes
infinite (logarithmically) because of the infinitesimal gap [1, 5], so that
the input susceptance is undefined. The real part, however, remains
finite and, at z = 0, gives the following input conductance G

(∞)
ex,δ

G
(∞)
ex,δ =

4k
πζ0

∫ k

0

dζ

(k2 − ζ2)
[
J2

0 (a
√

k2 − ζ2) + Y 2
0 (a

√
k2 − ζ2)

] . (9)

Eqn. (9) can be deduced from [5] or [24]. The latter reference also
contains a brief derivation (note, however, some essential changes
in notation). Appendix A provides an improved, more elegant
derivation, which proceeds from the aforementioned principal-value
integral representation of I(∞)

ex,δ (z). That derivation will form the basis
for other results in this paper.

4.2. Exact Kernel/Frill Generator

With this combination, the input admittance G
(∞)
ex,fr + iB

(∞)
ex,fr can be

found immediately from (8). It is given by the convergent integral

G
(∞)
ex,fr + iB

(∞)
ex,fr =

2ik
ζ0 ln(b/a)

∫ ∞

0,(k)

K̄ap(ζ, a) − K̄ap(ζ, b)
(k2 − ζ2)K̄ex(ζ, a)

dζ. (10)

If one applies the procedure of Appendix A starting from (8) (instead
of (7)), it is possible to come up with a formula for G

(∞)
ex,fr as an integral

from 0 to k (similar, that is, to (9)), but we will not dwell on this point.
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4.3. Approximate Kernel/Delta-Function Generator

With the approximate kernel/delta-function generator combination,
the integral equation is non-solvable. One can, however, define an
input conductance G

(∞)
ap,δ by the following sequence of steps [1]. (i)

Apply Galerkin’s method with pulse functions to the integral equation;
let z0 be the pulse width. (ii) Divide the “Galerkin solution” (for the
current) thus obtained by the driving voltage V . (iii) Take the limit of
the real part as z0 → 0 (the limit of the imaginary part is, of course,
infinite). (iv) Finally, set z = 0. One finally obtains [1] (also, [24]; but
note the notation differences)

G
(∞)
ap,δ =

4k
πζ0

∫ k

0

J0(a
√

k2 − ζ2)

(k2 − ζ2)
[
J2

0 (a
√

k2 − ζ2) + Y 2
0 (a

√
k2 − ζ2)

] dζ,

(11)
which differs from (9) only in the J0 in the numerator of the integrand.

The above sequence of steps immediately gives rise to the question:
Would a numerical method other than Galerkin’s method with pulse
functions give a different input conductance? The answer seems to be
no: The discussion in [5, Section 8.5] shows that G

(∞)
ap,δ is actually a

method-independent quantity.

4.4. Approximate Kernel/Frill Generator

With the approximate kernel/frill generator combination, the input
admittance is obtained from (8) as

G
(∞)
ap,fr + iB

(∞)
ap,fr =

2ik
ζ0 ln(b/a)

∫ ∞

0,(k)

K̄ap(ζ, a) − K̄ap(ζ, b)
(k2 − ζ2)K̄ap(ζ, a)

dζ. (12)

The only difference from the exact-kernel case (10) is that K̄ap(ζ, a)
appears in place of K̄ex(ζ, a) in the denominator of the integrand. Once
again, it is possible to find a formula for G

(∞)
ap,fr as an integral from 0 to

k.

5. LIMITING CASES

5.1. The Small-Frill Limit: General Formulas

For any antenna radius a, the delta-function generator is infinitesimally
small in size (height). One might thus be led to believe that the
current (admittance) due to an infinitesimally small frill generator—
limit b → a, to be referred to as “small-frill limit” and indicated by
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the subscript ‘smfr’—would reduce to the current (admittance) due to
the delta-function generator. We will show here that this is not the
case: Assuming that the kernel remains the same, the limiting values
of current and admittance are different. We will then take a further
step and come up with an unexpected relation between the small-frill
limit and the delta-function generator case.

In (8), replace ln(b/a) and K̄ap(ζ, a)−K̄ap(ζ, b) by the first nonzero
term in their respective Taylor-series expansion about the point b = a
to obtain

I
(∞)
ex/ap,smfr(z) = −2ikaV

ζ0

∫ ∞

0,(k)

g(ζ, a) cos ζz
(k2 − ζ2)K̄ex/ap(ζ, a)

dζ, (13)

where g(ζ, a) = ∂K̄ap(ζ, a)/∂a. This derivative can be obtained with
(1) and the formulas [23, eqns. 9.1.28 and 9.6.27] for the derivatives of
H

(1)
0 and K0. It is

g(ζ, a) =



− i

4

(
k2 − ζ2

)1/2
H

(1)
1 (a

√
k2 − ζ2), if |ζ| < k

− 1
2π

(
ζ2 − k2

)1/2
K1(a

√
ζ2 − k2), if |ζ| > k.

(14)

In (14), the top (|ζ| < k) and bottom (|ζ| > k) formulas are, once
again, analytic continuations of one another. Furthermore, g is real
when ζ is real and |ζ| > k.

The asymptotic behavior of g(ζ, a) near ζ = k can be found
from the small-argument formula for H

(1)
1 [23, 9.1.3, 9.1.10, 9.1.11],

or, alternatively, from the corresponding formula for K1 [23, 9.6.10,
9.6.11]. It is

g(ζ, a) = − 1
2πa

+ O [(ζ − k) ln(ζ − k)] , as ζ → k. (15)

The point ζ = k is, once again, a non-integrable singularity and is
bypassed in (13).

For large, positive ζ, the asymptotic behavior of g(ζ, a) can be
found from the large-argument formula [23, 9.7.2] for K1 to be

g(ζ, a) ∼ − 1√
8πa

e−aζ
√

ζ, as ζ → +∞. (16)

So far, the results in this section hold for both kernels. We now
specialize.
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5.2. The Small-Frill Limit: Exact Kernel

For the case of the exact kernel, from (16) and (4) it is seen that the
integrand in (13) decays exponentially, so that the integral converges
for all real z. Because the current I

(∞)
ex,smfr(z) in (13) is different from

the current I
(∞)
ex,δ (z) in (7), the current due to the small frill is, indeed,

different from the current due to the delta-function generator. The
input admittance corresponding to the present case is

G
(∞)
ex,smfr + iB

(∞)
ex,smfr = −2ika

ζ0

∫ ∞

0,(k)

g(ζ, a)
(k2 − ζ2)K̄ex(ζ, a)

dζ. (17)

One can go further and find formulas for the conductance. This
is done in Appendix B—the procedure resembles that of Appendix A.
The final result is

G
(∞)
ex,smfr =

4k
πζ0

∫ k

0

dζ

(k2 − ζ2)J0(a
√

k2 − ζ2)
[
J2

0 (a
√

k2 − ζ2) + Y 2
0 (a

√
k2 − ζ2)

] ,
(18)

which differs from (9) only by the extra J0 in the denominator. From
(9) and the small argument formula [23, 9.1.12] of J0, it is apparent
that

G
(∞)
ex,smfr −G

(∞)
ex,δ = O(a2), as a → 0, (19)

so that the two conductances are very close to one another, and the
difference vanishes for small antenna radius.

5.3. The Small-Frill Limit: Approximate Kernel

Eqns. (16) and (3) show that, with the approximate kernel, the
integrand in (13) is of order cos ζz/ζ for large, positive ζ. Thus, the
integral converges for all real z except z = 0, and gives the current
due to the small frill. With the same kernel, the corresponding current
due to the delta-function generator is not well-defined. Thus, with the
approximate kernel, the small frill is clearly different from the delta-
function generator.

The conductance for this case is determined in Appendix C—the
approach is very similar to that of Appendix B. One is lead precisely
to the expression on the RHS of (9), so that

G
(∞)
ap,smfr = G

(∞)
ex,δ . (20)
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We have thus reached the surprising (at least to us!) conclusion that
both
(i) replacing the small frill by a delta-function generator and
(ii) replacing the approximate kernel by the exact kernel,
leaves the input conductance (or, more generally, the real part
of I(∞)(z)/V ) unaltered (but any single one of the above two
replacements changes the conductance.) There seems to be no simple
physical explanation of the equality (20). Finding such an explanation
is hindered by the fact that there is no similar equality for the
imaginary part of I(∞)(z)/V (at z = 0, the susceptance Im{I(∞)(0)/V }
remains, in both cases, undefined).

5.4. The Thin-Antenna, Small-Frill Limit

We now consider the case where both the antenna is thin and the frill
is small. Specifically, consider that a → 0 and b → 0 while b/a =fixed,
a situation to be described as the “thin-antenna, small-frill limit.” Let
µ = b/a. It is a consequence of the small-argument formula for H

(1)
0

or, alternatively, of the corresponding formula for K0 that

K̄ap(ζ, a) − K̄ap(ζ, µa) ∼
1
2π

lnµ, as a → 0 with µ fixed. (21)

As a consequence of (8) and (21), in the limit b → a with b/a =fixed,
one has

I
(∞)
ex/ap,fr(z) ∼

ikV

πζ0

∫ ∞

0,(k)

cos ζz
(k2 − ζ2)K̄ex/ap(ζ, a)

dζ. (22)

With the exact kernel, the integral on the RHS of (22) is precisely
the current (7) for the case of the delta-function generator. With the
approximate kernel, the integral on the RHS of (22) diverges. Thus,
for both kernels, the thin-antenna, small-frill limit reduces to the thin-
antenna limit of the delta-function generator. This is a natural result.

6. NUMERICAL CALCULATION OF INTEGRALS

The numerical results of this paper (next Section 7) are for input
admittance. The results were obtained by calculating the integrals of
the previous Sections 4 and 5 numerically. In this section, we describe
our numerical integration schemes.
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6.1. Integrals for Conductance

Consider, first the integrals in (9), (11), and (18), which represent,
respectively, the input conductances G

(∞)
ex,δ , G

(∞)
ap,δ, and G

(∞)
ex,smfr. We

used several schemes for these integrals, and compared the results.
One successful scheme results by a change of variable ζ/k =

√
1 − t2

so that (9), for example, is converted to

G
(∞)
ex,δ =

4
πζ0

∫ 1

0

dt

t
√

1 − t2
[
J2

0 (kat) + Y 2
0 (kat)

] . (23)

The integration path is a finite portion of the real axis, on which
the integrand is real and analytic. Singularities occur only at the
endpoints: The integrand behaves like 1/

√
1 − t near t = 1 and like

1/[t(ln t)2] near t = 0. Both singularities are, of course, integrable
(integrability in the latter case is discussed in Appendix A), and can
be handled by appropriate, adaptive numerical integration routines.

6.2. Integrals for Admittance

Less straightforward are the complex integrals in (10), (12), and (17),
which represent input admittance (both conductance and susceptance).
By (3), (4), and (16), the integrands in (10) and (17) decrease
exponentially for large, positive ζ. This desirable property does not
hold for the integrand in (12), but the difficulty is easily circumvented
if one splits the integral into two and evaluates the first in closed form.
The result is

G
(∞)
ap,fr + iB

(∞)
ap,fr =

π

ζ0 ln(b/a)

[
1 − 2ik

π

∫ ∞

0,(k)

K̄ap(ζ, b)
(k2 − ζ2)K̄ap(ζ, a)

dζ

]
,

(24)
in which the new integrand is exponentially decreasing.

The integrals (10), (17), and (24) were calculated by bypassing
the non-integrable singularity at ζ = k by a well-shaped path lying
in the lower-half plane. The integral is, of course, independent of the
well’s height and length, and these parameters were varied as a check.
Lastly, we integrated up to a finite upper limit ζmax which we increased
until “convergence;” because of the integrands’ exponential decrease,
the finally required value of ζmax was not particularly large.

7. ADMITTANCE: SELECTED NUMERICAL RESULTS

In this section, we present numerical results as function of the two
parameters a/λ and b/λ. The values of a/λ is always taken to



296 Fikioris and Valagiannopoulos

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
1

1.5

2

2.5

3

3.5

4
x 10

-3

G(S)

α/λ

Figure 1. Input conductances G
(∞)
ex,δ and G

(∞)
ap,smfr (by eqn. (20), the

two quantities are equal) as function of the electrical radius a/λ. The
leftmost point corresponds to a/λ = 0.0005; smaller values of a/λ lead
to smaller values of conductance.

be smaller than 0.02 (note, however, that the approximate kernel is
ordinarily used up to a/λ = 0.01 only [1, 25]). The value of b/λ is
such that the single-mode (TEM) assumption of the coaxial line always
holds (i.e., the TE11 mode, which is the next mode, cannot propagate).

7.1. b-Independent Quantities

Fig. 1 shows the input conductance G
(∞)
ex,δ (similar results for this

quantity can also be found in [14]) which, by eqn. (20), is equal to
G

(∞)
ap,smfr. The percentage differences between this quantity and the

other two b-independent conductances G
(∞)
ap,δ and G

(∞)
ex,smfr are shown

in Fig. 2. In accordance with eqn. (19), the differences increase
with increasing a/λ. Perhaps unexpectedly, all quantities are seen
to be extremely close to one another: The largest difference (it occurs
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0

0.02
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∆
(%)

(a)

(b)

Figure 2. Percentage errors (a) between conductances G
(∞)
ex,δ and G

(∞)
ap,δ

(top curve) and (b) between conductances G
(∞)
ex,δ and G

(∞)
ex,smfr (bottom

curve).

between the quantities G
(∞)
ap,δ and G

(∞)
ex,smfr) is only 0.2% for the thickest

antenna (a/λ = 0.02). These results show that the input conductances
in the small-frill limit are numerically very close to those of the delta-
function generator.

The only input susceptance which is independent of b is B
(∞)
ex,smfr;

it will be plotted together with other quantities in Fig. 6 below.

7.2. Quantities that Depend on b

The above-discussed quantities do not depend on b and the picture that
emerges is very simple. By contrast, the overall picture that emerges
from the quantities that do depend on b is quite complicated. Out of
the many numerical results we have obtained, the ones to be shown
have been selected to illustrate and supplement what we have found
analytically.

Fig. 3 shows the b-dependent conductances G
(∞)
ex,fr and G

(∞)
ap,fr
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Figure 3. b-dependent conductances G
(∞)
ex,fr and G

(∞)
ap,fr together with

the b-independent G
(∞)
ex,δ and G

(∞)
ap,δ as function of b/λ, for fixed a/λ =

0.01.

together with the b-independent G
(∞)
ex,δ and G

(∞)
ap,δ for fixed a/λ = 0.01.

The varying parameter is b/λ. The leftmost part of this curve
corresponds to the small-frill limit; thus, the analysis of Sections 5.2
and 5.3 explains the coincidence, at left, of G

(∞)
ex,δ and G

(∞)
ap,fr. It also

explains the non-coincidence, at left, of the other quantities. As one
moves toward the right (i.e., for larger values of b/λ), there are some
crossovers and after these, the differences grow. Once again, the overall
differences remain very, very small.

Fig. 4 shows the four conductances, this time for varying a/λ
and fixed b/a = 10. The results separate into two groups, one
involving the frill, and one involving the delta-function generator. This
rather large value b/a = 10 was so chosen so that the differences can
be distinguished graphically (smaller values of b/a lead to smaller
differences between the two groups). The analysis of Section 5.4
explains the coincidence at left.

It is very well known that input susceptance is generally a more
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Figure 4. The four conductances of Fig. 5 for varying a/λ. For G
(∞)
ex,fr

and G
(∞)
ap,fr, b/a is fixed and equal to 10.

sensitive quantity than input conductance, and the infinite antennas
considered here present no exception to this. For b > a, there are two
well-defined input susceptances, B

(∞)
ex,fr and B

(∞)
ap,fr. They are shown in

Fig. 5 as function of a/λ, for fixed b/a = 2. As expected, the difference
vanishes at left. As opposed to the conductances, the differences here
are quite large: When a/λ = 0.01 (middle of diagram), the difference
is 14%. As one might expect, the difference decreases as b/a increases:
When b/a = 5, it is 7% and when b/a = 1.01, it is 45%.

In Fig. 6, the two b-dependent susceptances are shown, once again,
for varying a/λ. This time, b/λ is fixed and equal to 0.011. Also shown
is the b-independent quantity B

(∞)
ex,smfr which, naturally, coincides at

right with B
(∞)
ex,fr. The discussion in Section 5.C and the fact that the

rightmost part corresponds to the small-frill limit explain why B
(∞)
ap,fr

appears to diverge at right.
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Figure 5. The two susceptances B
(∞)
ex,fr and B

(∞)
ap,fr as function of a/λ,

for fixed b/a = 2.

8. CONCLUSION

In this paper, the driven dipole antenna of infinite length was
considered. There are two choices of kernel in the integral equations
for the current distribution, the exact and the approximate kernel,
and two choices of feed, the delta-function generator and the frill
generator. Out of the four possible integral equations, three are
solvable whereas one (delta-function generator/approximate kernel) is
not. Hallén and Pocklington-type integral equations are equivalent.
All solvable integral equations can be solved explicitly.

It is possible to define an input conductance (G) for all three
solvable cases. It is also possible to define a G for the non-solvable
case; to do this, one applies a particular numerical method (Galerkin’s
method with pulse functions) to the integral equations and then takes
the limit of the numerical solution as the pulse width goes to zero; in
all likelihood, this definition is actually method-independent. Input
susceptances (B) can be defined only for the two cases involving the
frill generator.
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Figure 6. The two b-dependent susceptances B
(∞)
ex,fr and B

(∞)
ap,fr as

function of a/λ, for fixed b/λ = 0.011. Also shown is the b-independent
quantity B

(∞)
ex,smfr.

The aforementioned expressions for G and B take the form of
convergent complex integrals involving the antenna radius a/λ and,
in the case of the frill generator, the outer radius b/λ. When it is
required to integrate to infinity, it is always possible to find forms with
exponentially decreasing integrands. All integrals can be computed
numerically, and interesting limiting cases can be studied analytically.
Our numerical and analytical investigations show that the G’s for
the various cases are very close to one another, while certain B’s
can differ significantly. They also show that G for the delta-function
generator/exact kernel combination exactly coincides with the limiting
value, as b → a, of G for the frill generator/approximate kernel case.
On the other hand, the “small-frill limit” b → a does not exactly reduce
to the delta-function generator case when the kernel remains the same.
Such a reduction happens only when both a and b tend to zero, while
b/a remains fixed, a situation referred to in this paper as the “thin-
antenna, small-frill limit”.



302 Fikioris and Valagiannopoulos

ACKNOWLEDGMENT

This work was supported, in part, by the EPEAEK Pythagoras
Research Program. The work of CAV came from his Senior Thesis
at the National Technical University.

APPENDIX A. ALTERNATIVE REPRESENTATION
FOR I

(∞)
ex,δ (Z); DERIVATION OF (9)

Here, we write (7) as a Cauchy Principal Value integral and use this
to derive (9). Assume initially that z 	= 0. Denote the integrand of
I

(∞)
ex,δ (z)/V in (7) by r(ζ), so that

r(ζ) =
ik

πζ0

cos ζz
(k2 − ζ2)K̄ex(ζ, a)

. (A1)

From (A1) and (6) it is seen that

r(ζ) =
2i cos kz

ζ0

1
(ζ − k) ln(ζ − k)

+ O

(
1

(ζ − k)[ln(ζ − k)]2

)
, (A2)

as ζ → k in the lower-half ζ-plane. Let Lε be a path that starts at k−ε
(ε > 0), ends at k + ε, and lies entirely in the lower-half ζ-plane. The
leading term in (A2) is non-integrable. Nonetheless, one can readily
show that, due to the symmetric integration limits, the limit as ε → 0
of the integral of this term along the path Lε exists and equals zero.
The remaining part in (A2) is integrable (to verify this, perform the
integral

∫ k
A

dζ
(k−ζ)[ln(k−ζ)]2

by setting k−ζ = e−t; here, A is a real number
close to k), so that the limit of its integral equals zero as well.

We have thus shown that limε→0
∫
Lε

r(ζ) dζ = 0; as a consequence,

I
(∞)
ex,δ (z)
V

= lim
ε→0

[∫ k−ε

0
r(ζ) dζ +

∫ ∞

k+ε
r(ζ) dζ

]
, (A3)

so that I
(∞)
ex,δ (z)/V has been written as a Cauchy Principal Value

integral [26]. † The second integral in (A3) is purely imaginary. It
necessarily follows that

Re




I
(∞)
ex,δ (z)
V


 =

∫ k

0
Re{r(ζ)} dζ, (A4)

† Here, unlike many other applications [26–28], the integrand r(ζ) does not have a simple
pole at ζ = k, but behaves in accordance with (A2).
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where no limε→0 is required. The quantity Re{r(ζ)} can be calculated
with the aid of (A1) and (2), and with G

(∞)
ex,δ = Re{I(∞)

ex,δ (0)/V }, eqn.
(9) has been derived. The restriction z 	= 0 can be removed in the real
part of I(∞)

ex,δ (z)/V only.

APPENDIX B. DERIVATION OF (18)

The derivation of (18) closely parallels the derivation in Appendix A.
From (13) with the exact kernel, the integrand r(ζ) of I(∞)

ex,smfr(z)/V is

r(ζ) =
(
−2ika

ζ0

)
g(ζ, a) cos ζz

(k2 − ζ2)K̄ex(ζ, a)
. (B1)

Because of (B1), (6), and (15), eqn. (A2) continues to hold. Thus,
similarly to (A3), we can write I

(∞)
ex,smfr(z)/V as a Cauchy Principal

Value integral, whose integrand is purely imaginary when ζ > k. It
follows that

Re




I
(∞)
ex,smfr(z)

V


 =

∫ k

0
Re{r(ζ)} dζ. (B2)

With (B1), (2), (14), and the Wronskian relation

J1(t)Y0(t) − J0(t)Y1(t) =
2
πt

(B3)

[23, 9.1.16], one can calculate Re{r(ζ)} and (18) readily follows. Here,
because of (4) and (16), there was no need to initially assume z 	= 0—
one has exponential convergence for all real z.

APPENDIX C. DERIVATION OF (20)

There are only minor differences between the derivation of (20) and
that of (18) (Appendix B). Assume, initially, that z 	= 0. From (13),
the integrand of I(∞)

ap,smfr(z)/V is

r(ζ) =
(
−2ika

ζ0

)
g(ζ, a) cos ζz

(k2 − ζ2)K̄ap(ζ, a)
. (C1)

It is readily checked that the arguments of Appendix B continue to
hold: A principal-value integral representation for I

(∞)
ap,smfr(z)/V is

possible once again, and the real part of this quantity is
∫ k
0 Re{r(ζ)} dζ.



304 Fikioris and Valagiannopoulos

One can find Re{r(ζ)} from (C1), (1), (14), and the Wronskian relation
(B3); Re{r(ζ)} here turns out to be identical to the corresponding
quantity of Appendix A (but differs from that in Appendix B).
The initial assumption z 	= 0—necessary because of the conditional
convergence in (13)—can be removed in the real part discussed herein,
but not in the imaginary part.
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