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Abstract—Knowledge of the current distribution on a radome can be
used to improve radome design, detect manufacturing errors, and to
verify numerical simulations. In this paper, the transformation from
near-field data to its equivalent current distribution on a surface of
arbitrary material, i.e., the radome, is analyzed. The transformation
is based on the scalar surface integral representation that relates the
equivalent currents to the near-field data. The presence of axial
symmetry enables usage of the fast Fourier transform (FFT) to reduce
the computational complexity. Furthermore, the problem is regularized
using the singular value decomposition (SVD). Both synthetic and
measured data are used to verify the method. The quantity of data is
large since the height of the radome corresponds to 29–43 wavelengths
in the frequency interval 8.0–12.0 GHz. It is shown that the method
gives an accurate description of the field radiated from an antenna, on
a surface enclosing it. Moreover, disturbances introduced by copper
plates attached to the radome surface, not localized in the measured
near field, are focused and detectable in the equivalent currents.
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1. INTRODUCTION

There are several applications of a near field to equivalent currents
transformation. For example, in the radome industry it is important
to have accurate models of the field radiated from the antenna inside
the radome. This field cannot be measured directly since the radome
often is placed very close to the antenna and at these distances, there
is a substantial interaction between the antenna and the measuring
probe [1–3]. Another field of application is in the manufacturing of
radiating bodies, i.e., radomes, antenna arrays etc., when the radiation
pattern from the body does not exhibit the expected form. By
determination of the equivalent currents on the radiating body the
malfunctioning areas or components can be found.

A common method, transforming near field to equivalent currents
and vice versa, is to use modal-expansions of the electric field [1]. This
is a very efficient method for radiating bodies with certain geometrical
symmetries, i.e., planar, cylindrical, and spherical. Having a planar
aperture the plane wave spectrum of the field is utelized in the back
transformation [4, 5]. The fact that the expression of the far field
originating from a planar surface is equal to the Fourier transform of
the radiating field on the aperture has been investigated in [3, 6]. The
paper [6] also illustrates that defects, i.e., patches of Eccosorb, can
be detected on the aperture. If the radiating body is of cylindrical
or spherical geometry the radial solutions contain cylindrical and
spherical Bessel functions while the angular solutions are described
by trigonometric functions and the associated Legendre functions,
respectively [1, 7]. For general geometrical symmetries, where modal-
expansions do not exist, the modal-expansion is less applicable.

Later on different combinations of the electric- and magnetic-
field integral equations (EFIE and MFIE) derived from the Maxwell
equations, cf., the Method of Moments (MoM), have been used to
back propagate fields towards their origin, i.e., a linear inverse source
problem is solved. By this method it is possible to handle a wider class
of geometries [3]. In [8] the dual-surface magnetic and electric-field
integral equations are investigated. The fields are transformed back to
a cubic perfect electric conductor by solving the dual-surface magnetic-
field integral equation using the conjugate gradient method. Other
work using the integral equations is reported in [9], where the near
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field is measured on a arbitrary surface and later inverted to a planar
perfectly conducting surface by using a singular value decomposition
(SVD) for regularization.

In this paper, the approach is to investigate a scalar surface
integral representation that does not require the aperture to be a
perfect electric or magnetic conductor. The representation provides a
relation relating the unknown electric and magnetic equivalent currents
on a surface to the measured electric field. An additional relation is
given by the fact that the equivalent currents are constructed such that
the integral is zero inside the volume, on which surface the currents
exist, i.e., the extinction theorem [10].

The integral relations are discretized into matrix linear equations.
The matrix equations include an azimuthal convolution which is solved
with a fast Fourier transform (FFT) in the angular coordinate. The
fast Fourier transform brings down the complexity of the problem, i.e.,
the original surface-to-surface linear map is decomposed into a set of
line-to-line linear maps. A singular value decomposition (SVD) is used
to invert each of these linear maps. As most inverse problems it is ill-
posed, i.e., small errors in the near-field data can produce large errors
in the equivalent currents. Thus, the problem needs to be regularized
by suppression of small singular values when inverted.

In this paper, the electric field to be inverted is presumed to be
scalar, i.e., the scalar surface integral representation is utelized. The
assumption is acceptable since the used near-field data, supplied by
SAAB Bofors Dynamics and Chelton Applied Composites, Sweden,
clearly have one dominating component in the main lobe, see
Figure 3. The measured data is given for three different antenna and
radome configurations, viz., antenna, antenna together with radome,
and antenna together with defect radome. The height of the
radome corresponds to 29–43 wavelengths in the frequency interval
8.0–12.0 GHz.

As a start, synthetic data is used to verify the method. Verification
is also performed by a comparison between the measured far field and
the far field calculated from the equivalent currents on the radome.
The calculated far field agrees well with the measured far field. We
show that the method can describe the field radiated from an antenna,
on a surface enclosing it. When the radome is introduced the field is
scattered and flash lobes arise. The equivalent currents on the radome,
that produce the electric field measured in the near-field area, are
identified and the flash lobes are accurately detected.

Manufacturing errors, not localized in the measured near-field
data, can be focused and detected in the equivalent currents on the
radome surface. In this paper, it is shown that the field scattered by



182 Persson and Gustafsson

copper plates attached on the radome, are focused back towards the
original position of the copper plates. The length of the side of the
square copper plates is 6 cm, i.e., 1.6–2.4 wavelengths corresponding to
the frequency span 8.0–12.0 GHz.

In Section 2 the experimental set-up is described and the measured
near-field data is presented. The scalar surface integral representation
is introduced and adapted to the specific problem in Section 3.
Section 4 discusses the implementation process of the scalar surface
integral representation. Results, using synthetic near-field data and
the error of the method is elucidated. The results, when using the
experimental near-field data, are shown and examined in Section 5.
The paper ends with the achieved conclusions in Section 6.

2. NEAR-FIELD MEASUREMENTS

The near-field data, used in this paper, was supplied by SAAB Bofors
Dynamics and Chelton Applied Composites, Sweden. The set-up with
relevant dimensions indicated is shown in Figures 1 and 2a. Three
different measurements were performed; data measured without the

Figure 1. Photo of the cylindrical near-field range at SAAB Bofors
Dynamics, Sweden. The antenna under test is rotated and the probe
is moved in the vertical direction. A close up of the reflector antenna
is shown in the upper right corner.
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Figure 2. (a) The dimensions of the reflector antenna, the radome,
and the cylinder where the electric near field is measured. (b) A close-
up showing the discretized geometric variables.

radome, data measured with the radome, and data measured with the
defect radome. The defect radome has two copper plates attached to
its surface.

A reflector antenna fed by a symmetrically placed wave-guide
generates the near-field data, see Figure 1. The diameter of the antenna
is 0.32 m and its focal distance is 0.1 m. The main lobe of the antenna is
vertically polarized relative to the horizontal plane. The standing wave
ratio (SWR) is approximately 1.4 in the frequency range 8.2–9.5 GHz.
The antenna is poorly adapted for other frequencies. A 10 dB reflection
attenuator is connected to the antenna.

The radome surface is described by

ρ(z) =


0.213 m − 0.728 m ≤ z ≤ −0.663 m

−(bz′ + d) +
√

(bz′ + d)2 − a(z′)2 − 2cz′ − e
−0.663 m < z ≤ 0.342 m

(1)

where z′ = z + 0.728 m and the constants are a = 0.122, b = 0.048,
c = −0.018 m, d = 0.148 m, and e = −0.108 m2. The near-field
measurement probe consists of a wave-guide for which no compensation
is made in the final data. The cylindrical surface, where the electric
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field is measured, is located in the near-field zone [11].
The amplitude and phase of the electric field are measured in

the frequency interval 8.0–12.0 GHz on a cylindrical surface by moving
the probe in the z-direction and rotating the antenna under test, see
Figure 1. With this measurement set-up the fields on the top and the
bottom of the cylindrical surface could not be collected. It would have
been preferable to measure the fields on an infinite cylinder. However,
the size of the cylinder is chosen due to the influence of the turntable
below the radome and the low field amplitudes above z = 800 mm,
cf., Figures 2a and 3. In angle, 120 points are measured between
−180◦ and 180◦ in steps of 3◦. The z-dimension is divided into 129
points, every two points separated by 12.5 mm. This means that at
8.0 GHz the electric field is measured 3 times per wavelength, in the
z-direction, and 1.5 times per wavelength, in the angular direction,
respectively. Together, a total of 120 × 129 = 15480 measurement
points are used for each radome configuration and frequency. The co-
and cross-polarized measured electric fields are shown in Figure 3. The
differences between the three different antenna and radome cases arise
from constructive and destructive interference between the radiated
field and the scattered field. In Figure 3 it is also observed that
the electric field consists of a dominating co-component in the main
lobe, i.e., a dominating z-component since the antenna is vertically
polarized.

3. THE SURFACE INTEGRAL REPRESENTATION

The surface integral representation expresses the electromagnetic field
in a homogeneous and isotropic region in terms of its values on the
bounding surface. The representation states that if the electromagnetic
field on a surface of a volume is known, the electromagnetic field in
the volume can be determined [10, 12]. The representation is derived
starting from the time harmonic Maxwell equations with the time
convention eiωt. The Maxwell equations transform into the vector
Helmholtz equation

∇2E(r) + k2E(r) = 0 (2)

since the material (air) is source free, homogeneous, and isotropic.
Assume that the electric field only consists of a component in the

z-direction. This is a good approximation dealing with the specific
measurements described in Section 2 since our prime interest is to
reconstruct the electric field in the main lobe, where the z-component
is clearly the dominating one, cf., Figure 3.
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Figure 3. The measured co- and cross-polarized electric field on the
measurement cylinder at 8.0 GHz. In (a) and (b) the angle is fixed at
ϕ = 0, and the fields are normalized to the maximum value when no
radome is present in (a). In (c) and (d) the height is fixed at z = 0,
and the fields are normalized to the maximum value when no radome
is present in (c).

The scalar surface integral representation is derived using the free
space Green’s function g(r, r′) = e−ik|r−r′|/4π|r − r′| [10]∫∫

S

[
∂g(r, r′)

∂n
Ez(r) − g(r, r′)

∂Ez(r)
∂n

]
dS =

{
−Ez(r′) r′ ∈ V
0 r′ /∈ V

(3)

where V is the volume spanning from the outside of the radome to
infinity. The closed surface S is the radome surface with an added top
and bottom surface. Observe that the electric field does not have to be
zero outside the volume, i.e., inside the radome. The surface integral
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representation (3) only states that the left-hand side of the equation is
zero if the vector r′ points outside the volume V , i.e., the extinction
theorem [10].

In the full three dimensional expression the equivalent electric
and magnetic surface currents are defined as M(r) = −n̂ × E(r) and
J(r) = n̂×H(r) [11]. However, working with a scalar field, the surface
integral representation only depends on the scalar electric field, Ez, and
its normal derivative, ∂Ez/∂n, cf., (3), i.e., we chose to introduce the
equivalent surface currents as

M(r) ≡ Ez(r) and M ′(r) ≡ ∂Ez(r)
∂n

(4)

These are related to the original definitions of the equivalent electric
and magnetic surface currents as

M(r) = −n̂ × E(r) = Ez(r)[ẑ × n̂] ≡ M(r)[ẑ × n̂] and

J(r) = n̂ × H(r) =
1
µ0

[n̂ × B(r)] = − i
ωµ0

{n̂ × [∇Ez(r) × ẑ]}

=
i

ωµ0

{
∂Ez

∂n
ẑ−[n̂ · ẑ]∇Ez(r)

}
≡ i
ωµ0

{M ′(r)ẑ−[n̂ · ẑ]∇Ez(r)}

where E(r) = Ez(r)ẑ. Insertion of M(r) and M ′(r) in (3) gives∫ ∫
radome

[
∂g(r, r′)

∂n
M(r) − g(r, r′)M ′(r)

]
dS

=
{

−Ecyl
z (r′) r′ ∈ cylinder

0 r′ ∈ surface inside radome
(5)

where Ecyl
z is the z-component of the electric field on the measurement

cylinder. The continuous variables are discretized to give linear matrix
equations. The discretized cylindrical coordinate system is described
by the integer indices displayed in Figure 2b.

3.1. Angular Fourier Transformation

The transformation, the Green’s function, is axially symmetric due to
the measurement set-up, see Section 2. Observe that the symmetry
only applies to the transformation, not to the electric field. Thus,
the left-hand side in (5) represents a convolution and by using a
fast Fourier transformation of the angle coordinate the computational
complexity can be brought down one dimension. This reduction of
one dimension, can be understood by writing the left-hand side in
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(5) as a matrix X. This matrix is a circulant matrix, i.e., every row
is shifted one step to the right compared to the previous row. The
eigenvectors of all circulant matrices are the column vectors of the
Fourier matrix F , defined from the discrete Fourier transformation,
i.e., x̂k =

∑N−1
n=0 xne

−i2πkn/N , 0 ≤ k ≤ N − 1, [13]. When a circulant
matrix is multiplied with the Fourier matrix. i.e., performing the fast
Fourier transformation, the result is FX = FΛ where Λ is a diagonal
matrix, which can be seen as a reduction of one dimension [13].

Discretization and fast Fourier transformation, in the angle
coordinate, of (5) give

Nm−1∑
m=0

[
Ĝ′

im̂M̂m̂ − Ĝim̂M̂
′
m̂

]
= −Êcyl

i̂ for all i, ̂ (6)

and

Nm−1∑
m=0

[
Ĝ′

pm̂M̂m̂ − Ĝpm̂M̂
′
m̂

]
= 0 for all p, ̂ (7)

where G and G are the surface integrals, taken over the radome, of
the Green’s function multiplied with the basis functions used in the
discretization process. G has the discretized space variable r′ belonging
to the measurement cylinder and G has the discretized space variable
r′ belonging to a surface inside the radome, respectively. The prime
denotes the normal derivative of the Green’s function, ̂ is the integer
index belonging to the Fourier transformed angle component, and
the “hat” denotes the Fourier transformed variables. The summation
limit Nm and the indices are described in Figure 2b. To solve the
scalar surface integral representation, a limit process of equation (7)
should be performed by forcing the fictitious surface inside the radome
towards the radome surface [11, 14]. However, in our attempt to find
a simple and feasible method to allocate the surface current the use
of the extinction theorem as an approximate solution to the integral
representation in equation (7) is sufficient.

Reduction of M ′ in (6) and (7) gives

Nm−1∑
m=0

{
Ĝ′

im̂ −
Np−1∑
p=0

Nm−1∑
q=0

Ĝiq̂ (Ĝ−1)qp̂ Ĝ′
pm̂

}
M̂m̂ = −Êcyl

i̂ for all i, ̂

(8)

where the summation limit Np is described in Figure 2b. The reduction
of the surface current M ′ is not necessary, i.e., the equation system
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can be solved for both M and M ′. However, here we chose to only
depict M since M ′ is more or less a scaled version of M . Equation (8)
can also be written as ̂ matrix equations

Ĝ
radome

̂ M̂ ̂ = −Ê
cyl

̂ for all ̂ (9)

where the matrices are defined as M̂ ̂ ≡ [M̂m1]̂, Ê
cyl

̂ ≡ [Êcyl
i1 ]̂, and

Ĝ
radome

̂ ≡ [Ĝ′
im]̂ − [Ĝim]̂[Ĝmp]−1

̂ [Ĝ′
pm]̂ (10)

The notation of matrices used here is that of [15].

3.2. Inversion with Singular Value Decomposition

Since the matrices Ĝ
radome

̂ and [Ĝmp]̂ in (9) and (10) are not quadratic,
a regular inversion cannot be performed. An optimization method,
e.g., Quasi-solutions or Minimum norm solutions, using Tikhonov
regularization [14], could be utilized. However, since the problem is
linear, a fast end easy way to perform the inversion is to use the
singular value decomposition (SVD) [13]. This method is used on both

matrices, but the SVD-equations are only given here for Ĝ
radome

̂ . The
matrix system (9) can then be rewritten as

Û ̂Ŝ ̂V̂
†
̂M̂ ̂ = −Ê

cyl

̂ for all ̂ (11)

where V̂
†
̂ denotes the Hermitian conjugate of V̂ ̂. Both Û ̂ and V̂ ̂

are orthogonal matrices. Ŝ ̂ is a diagonal matrix consisting of the

singular values to Ĝ
radome

̂ in decreasing order. The singular values of

both Ĝ
radome

̂ and [Ĝmp]̂ exhibit the tendency shown by the curves in
Figure 4a.

A cut-off value δ normalized to the operator L2-norm of Ĝ
radome

1

is chosen. The operator L2-norm of Ĝ
radome

1 is equal to the
largest singular value (σ1) of the largest Fourier transformed angle
component [14]. All singular values smaller than δ are ignored during
the inversion of Ŝ ̂ and are afterwards set to zero. If this is not done the
small singular values create an uncontrolled growth of non-radiation
currents when inverted. The mathematical formulation then fails since
very small electric field contributions become dominating. Performing
the inversion of (11) gives

M̂ ̂ = − V̂ ̂Ŝ
−1

̂ Û
†
̂Ê

cyl

̂ for all ̂ (12)
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Before the system of equations is solved it is necessary to convert
it back from Fourier space by an inverse fast Fourier transformation

M j = F−1

[
−V̂ ̂Ŝ

−1

̂ Û
†
̂Ê

cyl

̂

]
for all j, ̂ (13)

where j, as before, denotes the integer index belonging to the
discretized angle component, see Figure 2b.

4. IMPLEMENTATION

Some adjustments of the formulas are made in the implementation
process. To facilitate the calculations, the radome surface is reshaped
into a closed surface by adding a smooth top and bottom surface. These
extra surfaces are useful since the measurements are performed under
non-ideal conditions. The table, on which the antenna and radome are
placed, see Figure 1, reflects some of the radiation, which is taken care
of by the bottom surface. The top surface represents the electric field
that is reflected on the inside of the radome and then radiated through
the top hole. If these factors are not considered, unwanted edge effects
occur since the electric field originating from the table and the top of
the radome is forced to arise from the radome itself.

The measured electric near field is only measured 1.5 times per
wavelength, in the angular direction, at the frequency 8.0 GHz, see
Section 2. To be sure that the equivalent currents on the radome are
recreated in an accurate way it is necessary to have a high sample
density on the radome. This is achieved by increasing the number
of discrete points, in the angular direction, on the radome surface by
including extra angles between the already existing ones. Thus, the
axial symmetry of the Green’s transformation is kept. The sample
density on the measurement cylinder contributes very little to the total
error. The scalar surface integral representation creates currents on the
radome such that the electric field is correct at the measurement points.
However, if the Nyquist theorem is fulfilled, then the electric field is
correct at all points on the measurement surface, i.e., not only at the
measurement points. As mentioned before, the problem is large and the
matrix Ĝ, cf., (10), has approximately 108 elements at the frequency
8.0 GHz when the sample density is 10 points per wavelength both in
the angular direction and in the z-direction on the radome.

To verify and find the error of the method, synthetic data is
used. A synthetic electric field, originating from three dipoles inside
the radome is shown in Figure 4b. The corresponding reconstructed
current on a surface shaped as the radome is shown in Figure 4c where
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Figure 4. (a) The typical behavior of singular values of Ĝ
radome

̂

and [Ĝmp]̂. Every curve represents the singular values of a Fourier
transformed angle component, i.e., different ̂. The horizontal lines
describe the cut-off values δ = σ1[0.15 0.1 0.05 0.01 0.005]. (b) The
synthetic equivalent current, originating from three dipoles, in dB-scale
[−15, 0], normalized to the highest current value, i.e., the maximum
current magnitude in subfigure c. (c) The reconstructed current in
dB-scale [−15, 0], normalized to its highest current value.
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the sample density is 10 points per wavelength both in the z-direction
and in the angular direction. The inner fictitious surface is located one
wavelength from the radome surface.

The error as a function of the Fourier transformed angle
component is defined as

Err(̂) = 20 log10

‖ M̂ ̂ − M̂
correct

̂ ‖2

‖ M̂
correct

̂ ‖2

= 20 log10

√∑Nm−1
m=0 | M̂m̂ − M̂ correct

m̂ |2 ∆Sm√∑Nm−1
m=0 | M̂ correct

m̂ |2 ∆Sm

for all ̂ (14)

where ∆Sm denotes the discretized area elements on the radome.
By using synthetic data and choosing appropriate cut-off values

δ the error is shown to be below −60 dB for each existing Fourier
transformed angle component. To obtain these low error levels, the
measurement surface must be closed, i.e., field values at the top
and bottom surfaces of the cylindrical measurement surface must be
included. The cut-off values depend on the complexity of the specific
measurement set-up and must be investigated for each new set-up.

The total error of the scalar surface integral representation using
the measured near field described in Section 2 is hard to define since
the noise level and the amount of field spread outside the measurement
cylinder are unknown parameters. Instead we rely on the fact that the
method handles synthetic data well and that the results using measured
data is satisfactory, see Section 5.

5. RESULTS USING MEASURED NEAR-FIELD DATA

The measured near-field data, described in Section 2, is investigated.
The inner fictitious surface is located one wavelength from the radome
surface. The sample density on the radome is 10 points per wavelength
both in the angular direction and in the z-direction. The cut-off values
are determined in accordance with the discussion in Section 4.

Three different measurement configurations are investigated,
viz., antenna, antenna together with radome, and antenna together
with defect radome. The studied frequency interval is 8.0–12.0 GHz.
The results for the different measurement configurations are shown
in Figure 5a at the frequencies 8.0 GHz and 10.0 GHz. In Figure 5b
the results for the defect radome case are shown for the frequencies
8.0 GHz, 9.0 GHz, 10.0 GHz, 11.0 GHz, and 12.0 GHz, respectively.
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Figure 5. The reconstructed currents in dB-scale [−30, 0], all
normalized to the highest current value, i.e., the maximum current
magnitude in figure ac’. (a) The different measurement configurations
are depicted at two different frequencies. From left to right; antenna
without radome, antenna together with radome, and antenna together
with defect radome, respectively. The arrows point out the location of
the copper plates on the defect radome. (b) The defect radome case,
shown at different frequencies.

In the case when no radome is placed around the antenna the
equivalent current is calculated on a surface shaped as the radome,
see Figure 5aa’ and 5ad’. The figures show that the near field close
to the antenna is complex and hard to predict, i.e., the diffraction
pattern must be taken into account. The diffraction is explained as
environmental reflections and an off-centered antenna feed.

The case when the radome is present, see Figure 5ab’ and 5ae’,
shows in comparison to the case without radome that the used radome
interacts with the antenna and hence disturbs the radiated field.
However, the currents in the main lobe are hardly affected by the
radome, as seen in Figure 6a. The influence of the radome is clearly
visible in the reconstructed currents on the back of the radome where
flash lobes occur, see Figure 6b.

The defect radome has two copper plates attached to its surface.
These are placed in the forward direction of the main lobe of the
antenna and centered at the heights 41.5 cm and 65.5 cm above the
bottom of the radome. The length of the side of the squared copper
plates is 6 cm, which corresponds to 1.6 wavelengths at 8.0 GHz and
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Figure 6. Cross section of the reconstructed current on the radome
surface for the different measurement configurations, at 8.0 GHz. The
current is shown as functions of the radome height for a fixed angle. All
graphs are normalized to the highest current value, i.e., the maximum
current for the defect radome. (a) The graph representing the currents
in the main lobe, i.e., the front of the radome. The position of the
copper plates are marked as thick lines on the horizontal axis. (b) The
currents on the back of the radome.

2.4 wavelengths at 12.0 GHz, respectively. The locations of the copper
plates are detected as shown in Figure 5ac’ and 5af’, where the lower
plate appears clearly. The other plate is harder to discern since it
is placed in a region with small current magnitudes. However, a
cross section graph through the main lobe detects even this copper
plate, see Figure 6a. Observe that the effects of the copper plates
cannot be localized directly in the near-field data, compare Figure 6a
to Figure 3a. The near-field data only shows that the field is disturbed,
not the location of the disturbance. Nevertheless, by using the scalar
surface integral representation the effects of the plates are localized
and focused. The defect radome also increases the backscattering as
seen in Figure 6b. Due to the copper plates the flash lobes are different
compared to the case with the non-defect radome.

As a final verification, the far-field amplitude on a sphere in the
far-field region is studied. The electric field, originating from the
equivalent currents on the radome, is calculated on the sphere,

Esph
j = −F−1

[
Ĝ̂M̂ ̂

]
for all j, ̂ (15)

in accordance with (9) and (13), except that Ĝ̂ now describes the
transformation from the radome to the inner fictitious surface and the
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far-field sphere, respectively. The denotions j and ̂ are, as before, the
integer index belonging to the discretized angle component and the
Fourier transformed discretized angle component, respectively.

The far-field amplitude F is derived as

F (θ, φ) = kr eikrEsph(r, θ, φ) as r → ∞ (16)

where (r, θ, φ) describes the spherical coordinate system [16]. The
result is compared with far-field data, supplied by Chelton Applied
Composites, as shown in Figure 7. The far-field is depicted for the
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Figure 7. Comparison between the measured far-field data, supplied
by Chelton Applied Composites, and the far-field calculated from
the equivalent currents on the radome surface. The far-fields are
normalized to the maximum value of the far-field when no radome
is present. (a) Antenna without radome. (b) Antenna together with
radome. (c) Antenna together with defect radome. (d) The calculated
far-field pattern for the three measurement configurations.
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angles φ = 0 and φ = π, i.e., a cross-section through the far-field of the
main lobe and the corresponding far-field originating from the currents
on the back of the radome. There is a lack of agreement between the
measured far-field and the calculated one in the angles corresponding
to the top of the radome, i.e., θ ≈ 0. This is due to the fact that fields
originating hereof are not all included in the measured near-field data,
since the measurement surface is a cylinder, see Figure 2a. The fact
that the radome disturbs and reflects the electric field, as earlier seen
in Figure 6b, can also be detected in the far-field, see Figure 7d, where
flash lobes appear when the radome is present.

6. DISCUSSION AND CONCLUSIONS

The used scalar surface integral representation gives a linear map
between the equivalent currents and the near-field data for general
structures. It is here shown that this map can be inverted for axially
symmetric geometries. The model can theoretically be adapted to
geometries lacking symmetry axis, i.e., the fast Fourier transformation
can not be utilized to reduce the computational complexity. Although
it is not a feasible approach for radome applications, demanding large
quantities of measured data, with the present computer capacity.

The transformation method is stable and useful in radome design
and for evaluation purposes. To investigate the electric field passing
through the radome, the current distribution on the antenna or on
a surface enclosing the antenna must be known. Using the surface
integral representation, the equivalent currents, on a surface enclosing
the antenna, can be described.

Another range of application within the radome industry is to
study how e.g., lightning conductors and Pitot tubes, often placed
on radomes, influence the equivalent currents. We show that such
influences and the field effects of the radome itself can be detected. In
this paper, copper plates are attached on the radome, in the direction
of the antenna main lobe. The length of the side of the square copper
plates are 1.6–2.4 wavelengths, corresponding to the frequency span
8.0–12.0 GHz. The effects of the plates cannot be localized directly
by using the near-field data, but by using the equivalent currents the
effects are focused and detected on the radome surface. Thus, by
transforming the near-field data to the radome surface, field defects
introduced by the radome and other disturbances are focused back to
their origins.

It is concluded that the transformation method based on the
scalar surface integral representation works very well and that the
field of applications is large. A natural continuation is to elaborate
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the algorithm by including near field data with cross-polarization, i.e.,
to implement the full Maxwell equations with a Method of Moments
(MoM). Nevertheless, if the measured near-field data consists of one
dominating component the use of the full Maxwell equations are not
necessary, as shown in this paper.

Additional aspects to be investigated more thoroughly in the
future are the resolution possibilities of manufacturing errors and other
external field influences. Analysis of the phase information in the
equivalent currents is also of interest. Moreover, a study regarding
the detection of different materials attached to the radome surface is
desirable.
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