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Abstract—The reconstruction capabilities of a microwave imaging
algorithm can be enhanced by exploiting a multi-view measurement
set-up. In the past, different researches have proved that collecting
scattering data by probing the unknown scenario from different
incidence angles, it allows to acquire more information on the scenario
under test. This paper is aimed at verifying such an assumption in
a real scenario when the Iterative Multi-Scaling Approach (IMSA)
is used to fully exploit multi-view data. In fact, unlike synthetic
data, in a real environment more measurements introduce larger
systematic errors that could affect the physical constraints used in
the inversion procedure and, consequently, the reconstruction process.
Thus, the analysis is carried out by considering a set of experimental
data concerning different scattering configurations involving single and
multiple dielectric scatterers.
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1. INTRODUCTION

Each microwave imaging system, aimed at detecting, locating and
imaging unknown objects located in inaccessible areas (for a general
overview and some applications, see [1-4] and the references cited
therein), is constituted by two main parts. The algorithmic part
consists of a processing unit that performs the inversion of the scattered
field data by means of a suitable numerical procedure. On the
other hand, the electro-mechanical set-up allows the collection of the
measures of the electromagnetic field scattered by the scenario under
test. Usually, the measurement setup is designed according to the
experimental arrangement, which strongly depends on the problem
geometry.

Let us consider an ideal situation where there are not limits
to the collection of scattered field measures. Even in such a
favorable situation, the amount of collectable information from the
measurements is limited [5]. In order to enlarge the information content
arising from scattered data, multi-view systems [6] (i.e., systems
consisting of a rotating setup that probes the investigation area from
different angles of illumination) are commonly used. The imaging
process benefits by this improvement as theoretically shown in [7] and
numerically confirmed in [8] with several synthetic experiments.

But, the same can be said for real experiments? And, it is
true whatever the inversion procedure? And, what is the amount
of the improvement over single-view systems? The generalization
from synthetic to experimental environments is not obvious. In
many practical situations, several unavoidable errors and inaccuracies
occur. Just to do some examples, the environmental noise corrupts
the measures. Such an event adds to the interferences due to the
coupling among emitters and receivers and to the positioning errors of
the mechanical system. Consequently, a microwave imaging algorithm
operates on an unreliable dataset that could introduce false physical
constraints and bring the retrieval process towards false solutions.

On the other hand, the increasing of the number of scattering
data corresponds to an enlargement of the solution space and of its
dimensionality. Therefore, effective and reliable inversion techniques,
able to deal with such a situation, should be used. In such a framework,
this paper focuses on the reconstruction capabilities of the IMSA [9, 10]
when dealing with real data to assess “if” and “how much” this method
is able to fully exploit multi-view data.

The paper is organized as follows. The mathematical formulation
of the IMSA will be resumed in Section 2 to introduce in Section 3
a representative numerical analysis concerning real data scattered by
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Figure 1. Problem geometry.

single- and multiple-scatterers configurations. Some conclusions and
remarks will be drawn in Section 4.

2. MATHEMATICAL FORMULATION

Let us consider the two-dimensional scenario depicted in Figure 1. An
unknown scatterer, located in an investigation domain Dy, interacts
with a set of known probing electromagnetic fields, E, (z,y), v =
1, ..., V. The background is assumed lossless and non-magnetic while
the object is described by means of the contrast function 7(z,y) =

er(x, y)—l—j%&rxf’g, (x, y) € Dy, er(z, y) and o(x, y) being the dielec-

tric permittivity and the electric conductivity, respectively. The elec-

tromagnetic scattered field E¢, . (:rm(v> s Ymy) éEfOt (xm@),ym(v)) —

E? (xm(v),ymw) (EY, (x, y) being the electric field in the presence

wmc
of the scatterer) is collected in m,) = 1, ..., M, positions belonging
to an observation domain D), external to Dj.
From a mathematical point of view, the interactions among the
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scatterer and incident electromagnetic fields are described through the
Lippmann-Schwinger integral equations [11], discretized according to
the Richmond’s procedure [12]:

E;}catt (xm<v)7 ym(v)>
= %gZa{T(wmyn), Efot(‘,rn; yn)7n: 17”‘7N;'U: 17,V}
(xm<v)7ym(v)) GDM m(’v):177M(v)7 v:l)jv (1)

Eie (Tn, yn)
= %g"t::te{T(xna yn)7 Ez}ot(xrw yn); n= 177N7 v = 177V}

(xn,yn)eD] n:17)N7 ’U:l,"‘,v (2)
where 7(z,y) = ijzl T (Tn, yn) Fn (z,y) and Ep,(x,y) =

N L EY (Tn, yn) Fy (2, y), F,(z,y) being the nth basis function;

Sert and iy are the external and internal scattering operators [11].

Such a formulation provides a set of non-linear equations
characterized by an intrinsic ill-conditioning. = Then, the arising
algebraic system (1)—(2) is commonly solved by recasting the problem
to the minimization of a suitable cost function.

However, to better exploit the information content of scattered
data, a multi-scaling strategy [10] is used by defining a multi-resolution
expansion of the unknown quantities as follows

R N

T(wy)=3 > 7 (x"(rwy"(r)) Fngy (2, )

R N

By (z, y) = Z Z Eio ('/I:n(r)’ yn('r)) Fn,y (z, y) (4)

r=1 n(r)zl

where R defines the maximum order of the resolution (being 7 the
resolution index), and by iteratively performing (at each step s of the
process) a reconstruction with an increment of the spatial resolution
in the Region-of-Interest (Rol) to which the scatterer belongs.

For a detailed description, let us consider the flow-chart shown
in Fig. 2. At the “initialization” (s = 0), the investigation
domain is uniformly partitioned in Ny (R = 1) square sub-
domains and the problem unknowns are set to the background

configuration (Efogs) (xn(m, yn(m)JS:O = FE;. (xn(m, yn(m) and
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7(8) (J:”(R)’y”(R))Jszo = 70, n(r) = 1,..., N(g)). Moreover, the multi-
resolution cost function is defined [13]

(I){ ((Q)) (x”(r)’y”(r)) E:OgS) (xn(r)’yn(r)) ;

1,..,@(5); T’Zl,...,RZS;
ney =1y, Ny v=1,...,V

Qs V. Mu

v
Z Z ‘Escatt (xm(,u) ) ym(v))
qg=1v

=1m,)=1

R N

- > {w(Q) (xnwy”(r)) T((;)) ($”<r>’yn<r>)

r=ln)=1

Epy (xnm ’ y”(r)) Gad (A”<T>’p"<”m(”))}’2}

Qs) v. R Ney
{Z IS { (x%)’yn(r)) ‘Efnc (x”m’y"(r))

g=1lv=1lr=1ngy=1

Ny
v (s) (s)
— | Btot (x”m’yn(r))Jr Zl{T(q) (wuv)’y%))
U(r)=
v(s) 2
Etot (l‘u<” 9 yU(T)) G2d (AU(T)7PU(T)TL(T)) }:| ’} } (5)
where
w(® (xm y» Yn( >) - { i (xn(myn(r)) ’ D( ()S K
1 if ({L‘n(r)’yn(”) € DO(S 3
() being the number of scatterers and Dg),q = 1,...,Q the
corresponding Rols, where the synthetic zoom will be performed;
Q(s:O) =1

Successively (s < s + 1), the unknowns are updated

) (x”(R)’yn(m)Js:l -8 {mmT(O) {@(0)}} (6)

(q)
ngogS) (xn(R)’ yn(m)Js:l = arg {mm v (s) {<I>( )” (7)

tot
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Figure 2. Flow chart of the Iterative Multi-Scaling Method.

where () = & {T((;))) (l'n(r)ayn(r)) ) 11610560) (xn(rpyn(r))}a by minimiz-
ing (5) with a suitable optimization algorithm [14].

At this point, the multi-resolution capabilities of the IMSA are
fully exploited. The information acquired on the scenario under test
allows an estimate of the number () of scatterers lying in Dy as
well as of the geometrical parameters for each of the corresponding
Rols (“scatterer localization” phase and “estimation of the geometrical
parameters” phase — Fig. 2) [13]. The resolution level is enhanced
(R «<— R+ 1) in the Rols and a new representation of the unknowns
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is given according to (3) and (4). Then, a new minimization of
®(%) is performed by taking into account the so-defined (6)—(7) trial
configuration (“initialization of the new step” phase — Fig. 2).

Iteratively, such a procedure is repeated until a stationary
condition [13] for the reconstruction is reached (s = Sopt).

3. NUMERICAL ANALYSIS

In this Section, a numerical analysis will be carried out in order
to assess the reconstruction capabilities of the IMSA in regard to
the multi-view measurement setup by considering real scattered data.
Towards this end, some examples of the experimental dataset available

at the “Institute Fresnel” — Marseille, France [15] will be processed.
The first test case considers a single dielectric cylinder (15 mm in
radius) located at (z,,, = 0.0, yc,., = —30 mm) and characterized by a

homogeneous contrast 7(z, y) = 2.0 &+ 0.3 estimated with a waveguide
method [16]. Concerning the investigation domain, a square domain
Lpr = 30cm in side has been considered and the reconstruction
has been performed by fully exploiting the available scattering data
(M = 49), but using mono-frequency measurements (f = 4 GHz).

The effects of the multi-view setup, in terms of reconstruction
errors, will be analyzed by considering the following quantities

2 2
L &[0 T [, -2
P> )

(Localization Error)  (8)
R R

Q ‘ -
1 (Sopt) ref . .
A = — 2 (Dimensional Error)  (9)
a2 { R }

where the sub-script “ref” indicates actual quantities!.

As a first experiment, the reconstruction has been carried out
with a bare CG-based approach. The investigation domain has been
uniformly partitioned in N = 23 x 23 square sub-domains. Fig. 3
shows the behavior of the error figures versus the number of views
V used by the multi-view acquisition system. As can be observed,
the localization error p slightly decreases (from p],_; = 1.25 x 1071
up to ply_gq = 7.17 x 1072) in correspondence with an increasing of
the illuminations. On the contrary, an increment of A occurs (from

T Such quantities are equal to the nominal values reported in [15]
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Figure 3. Reconstruction of an off-centered homogeneous circular
cylinder (Real dataset “Marseille” [15], “dielTM_dec8f.exp”) — CG
Approach. Error figures versus V.

Aly_; = 296 x 107! up to Al 3y = 6.59 x 107!) as pictorially
shown in Fig. 4 where the images of the retrieved profiles when V =1,
V =6,V =12, and V = 24 are given’. Such a result seems to indicate
that the CG-based approach does not fully exploit the advantages of
a multi-view system.

Then, in the second experiment, the same problem has been
addressed by using the IMSA with the same CG-based optimizer for the
cost function minimization (IMSA-CG Approach). According to the
amount of information of the scattering data [7] and at the initialization
of the multi-scaling process, Dy has been discretized in N(g) = 10 x 10
(R =1) square cells.

For comparison purposes, Fig. 5 shows the behavior of the error
figures for the two methods. Concerning the IMSA-CG Approach,
the localization accuracy benefits of the enlargement of the available
information content (similarly to the CG Approach) as well as the
dimensional error, which turns out to be A < 2.0 x 10~ whatever V.
For completeness, Figs. 6(a)-6(b) display the retrieved profiles when
V=1V=6,V =12 and V = 24, respectively.

¥ Please note that the black pixel in the lower right border is used for reference and the
dashed line indicates the region occupied by the actual scatterer.
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Figure 4. Reconstruction of an off-centered homogeneous circular
cylinder (Real dataset“Marseille” [15], “dielTM_decS8f.exp”) — CG
Approach. Retrieved profiles at the convergence by considering (a)
V=1, () V=6,(c) V=12, and (d) V = 24 views.
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Figure 5. Reconstruction of an off-centered homogeneous circular
cylinder (Real dataset “Marseille” [15], “dielTM_dec8f.exp”) — Error
figures versus V for the CG Approach and the IMSA-CG Approach.

To generalize these indications, the same analysis has been
performed for a multiple-scatterers scenario. Towards this aim, the
dataset “twodielTM_8f.exp” [15], concerned with two circular dielectric
() = 73 = 2.0 4+ 0.3) cylinders of radius Rfé)f = Ri)]c = 15mm
placed 90 mm from each other and located at the nominal coordinates
(xﬁ}jf = 0.0, y((;izf = 45mm) and (wng = 0.0, yggf = —45mm), has
been processed.



Progress In Electromagnetics Research, PIER 54, 2005 147

g X & X

EETT 00 92

26 Re{t(x,y)} 0.0 2.6 Ref{t(x,y)} 00

(a) (b)

EEEENNSS ] 2 )

2.6 Re{t(x,y)} 0.0 2.6 Re{t(x,y)} 0.0

(©) (@)

Figure 6. Reconstruction of an off-centered homogeneous circular
cylinder (Real dataset “Marseille” [15], “dielTM_dec8f.exp”) — IMSA-
CG Approach. Retrieved profiles at the convergence step s = Sy by
considering (a) V =1, (b) V=6, (¢) V =12, and (d) V = 24 views.
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Figure 7. Reconstruction of two homogeneous circular cylinders (Real
dataset “Marseille” [15], “twodiel TM_8f.exp”) — Error figures versus
V for the CG Approach and the IMSA-CG Approach.
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The achieved results, in terms of localization [Fig. 7(a)] as well
as shaping accuracy [Fig. 7(b)], clearly point out an improvement
in the reconstruction allowed by the multi-view setup. Whatever
the inversion method, p and A significantly reduces by assessing an
advantage in the inversion when more views are used. More in detail,
as far as the localization accuracy is concerned, p varies between
ply—y ~ 6.0 x 107! and p|y,_3p ~ 1.0 x 107! and the IMSA-CG
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Figure 8. Reconstruction of two homogeneous circular cylinders (Real
dataset “Marseille” [15], “twodielTM_8f.exp”) — Retrieved profiles at
the convergence with the (a)CG Approach, V. = 1, (b) IMSA-CG
Approach, V =1, (¢) CG Approach, V =6, (d) IMSA-CG Approach,
V =6, (e) CG Approach, V = 12, (f) IMSA-CG Approach, V = 12,
(g) CG Approach, V =24, and (h) IMSA-CG Approach, V = 24.
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Approach outperforms the bare CG procedure. Similar considerations
can be drawn also by observing the behavior of A. A non-negligible (if
compared to the error values of the CG-based method) improvement
in the reconstruction is allowed by the multi-scaling approach when
A(CG>JV:1 A(CG)JV:M
Ve l, 16] (A(IMSA—CG)JV : ~ 2.80 and ATTSA ] ~ 1.90).
Finally, Fig. 8 shows the images of the reconstructed profiles
when the CG-Approach [Figs. 8(a), 8(c), 8(e), 8(g)] and the IMSA-CG
Approach [Figs. 8(b), 8(d), 8(f), 8(h)] are used for V =1 [Figs. 8(a),
8(b)], V = 6 [Figs. 8(c), 8(d)], V = 12 [Figs. 8(e), 8(f)], and V = 24
[Figs. 8(g), 8(h)] views, respectively. The two cylinders have been
effectively reconstructed, but the reconstruction accuracy gets better
when the number of views grows. Moreover, as indicated by the values
of the error figures, the retrieval achieved with IMSA-CG Approach
turns out to be more close to the actual one when the multi-view
setup is adopted. However, it can be remarked that the centers of
each cylinders are slightly shifted whatever V' > 1. Even though such
a shift is within the experimental margin, it should be pointed out
that a similar behavior has been obtained in several tests with various
methods (see [15] for a detailed review). This could suggest that an
incorrect positioning occurred during the data measurement.

4. CONCLUSIONS

In this paper, the effect of a multi-view measurement setup on
the reconstruction accuracy of the IMSA has been analyzed. The
capabilities of the multi-resolution approach to fully exploit the
increment of the information content allowed by the multi-view
system have been assessed and compared with those of a standard
reference method. As a benchmark, some experimental dataset
available at the “Institute Fresnel” — Marseille, have been processed
and, notwithstanding the large amount of systematic errors that a
real measurement setup introduce, the proposed strategy has shown
satisfactory performances. The obtained results indicate that the
IMSA benefits by multi-illumination conditions in a real environment,
as well, and it is able to usefully exploit the allowed increment of
information.
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