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Abstract—From a very roughly random surface the backscattering
enhancement is predicted due to the constructive interference of
multiple surfaces scattering. For specialized surfaces involving
roughness large compared with the incident wavelength, the
backscattering enhancement takes place. The phenomenon of
backscatter enhancement becomes evident for both larger normalized
surface height and surface rms slope. In this paper we take
further study to predict the backscattering enhancement mainly comes
from upward multiple scattering. On the contrary the downward
multiple scattering has no contributions to the scatter strength of
backscattering enhancement. The model developed in this paper is
based upon the integral equation method and able to predict this
phenomenon of multiple scattering and backscattering enhancement.
The depolarized multiple scattering makes much contribution along the
plane of incidence from random rough surfaces, but depolarized single
scattering makes little contributions. The total multiple scattering
strength is the summation of upward and downward multiple scattering
strength. In comparison of model prediction of total multiple scattering
strength with measured data along the specular plane, excellent
agreement is obtained.
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1. INTRODUCTION

The experimental study of backscattering enhancement from charac-
terized random surfaces was studied by L. Ailes-Sengers in 1995 [1].
The comparisons of Monte Carlo numerical studies and experimental
measurement of backscattering enhancement from 2-D perfectly con-
ducting random rough surfaces was made in 1996 [2, 3]. Up to date a
theoretical model for studying the backscattering enhancement and the
relationship among the backscattering enhancement and the multiple
scattering is still lacking. Further the study of upward or downward
multiple scattering making major contributions to backscattering en-
hancement is also lacking.

In this paper we develop the scattering model to predict
the multiple scattering and backscattering enhancement and the
relationship among them. Due that the phase terms of Green’s function
and its derivative in the integral equation pairs is a possible candidate
for the backscattering enhancement from very rough surfaces, the
model developed in this paper is based upon the integral equation
pairs with tangential electric and magnetic surface fields.

First the governing equations for the tangential surface fields
on a dielectric surface can be written as the sum of the standard
Kirchhoff and complementary surface fields (Figure 1). The estimates
the tangential electric and magnetic fields at a surface point can
be obtained by the tangential surface fields. After estimating the
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Figure 1. Tangential surface current induced by Kirchhoff and
complementary scattering.

tangential surface fields the scattered field can be found in terms of
them. With the scattered field expression the average scattered power
and scattered coefficient can be found subsequently, the scattering
coefficient can then be expressed as the summation of Kirchhoff, cross
and complementary scattering coefficient in the paper. The model
predictions for upward and downward scatterings from rough surfaces
are shown under different surface parameters; surface rms height,
surface correlation length and surface rms slope. For studying the effect
of backscattering enhancement we also show the relationship among
the backscattering enhancement and multiple scattering strength.
Finally the comparison of multiple scattering prediction and the
measured data collected under controlled conditions from statistically
rough surfaces was made over a wide frequency range and rms surface
slope.

2. MODEL DEVELOPMENT

We first reformulate the integral equations for tangential surface fields
on a dielectric interface. The purpose of this reformulation is to obtain
the estimates of the tangential surface fields that are more general
than the existing Kirchhoff or perturbation surface fields and reduce to
known results under special conditions such as a perfectly conducting
surface. The integral equation pairs given by Poggio and Miller [5] for
the tangential surface electrical and magnetic fields in the dielectric
medium are shown below.

n̂× �E = 2n̂× �Ei − 2
4π

n̂×
∫

�E′′ds′
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and
n̂× �H = 2n̂× �H i +

2
4π

n̂×
∫

�H ′′ds′ (1)

In medium 2, we have

n̂t × �Et = − 2
4π

n̂t ×
∫

�E′′
t ds

′

n̂t × �Ht =
2
4π

n̂t ×
∫

�H ′′
t ds

′ (2)

where

�E′′ = jkη(n̂′ × �H ′)G− (n̂′ × �E′) ×∇′G− (n̂′ · �E′)∇′G
�H ′′ = jk(n̂′ × �H ′)G/η − (n̂′ × �H ′) ×∇′G + (n̂′ · �H ′)∇′G (3)

The fields in the lower medium can be written in terms of the fields
in the upper medium by applying the boundary conditions on the
continuity of the tangential fields.

The spectral representation for the Green’s function and its
gradient, i.e.,

G =
(
− 1

2π

) ∫
j

q
exp[ju(x− x′) + jv(y − y′) − jq|z − z′|]dudv (4)

and

∇′G =
(
− 1

2π

) ∫
�g

q
exp[ju(x− x′) + jv(y − y′) − jq|z − z′|]dudv (5)

where q =
√
k2 − u2 − v2 and �g = x̂u + ŷv ± ẑq. z and z′ are the

random variables representing the surface height at different locations
on surface. Without the absolute value term in the Green’s function
the ensemble average is the standard characteristic function for two,
three and four random variables. When the phase term of the Green’s
function with an absolute value sign is included, the major impact is
on the evaluation of the ensemble averages for finding the ensemble
average scattered power.

2.1. Scattered Power and Coefficients

With the given Kirchhoff and complementary scattered field, the
ensemble average scattered power is given by〈

Es
qpE

s
qp

∗
〉

=
〈
Ek

qpE
k
qp

∗〉
+ 2Re

〈
Ec

qpE
k
qp

∗〉
=

〈
Ec

qpE
c
qp

∗
〉

(6)
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where Re is the real part operator and * is the symbol for complex
conjugate. To obtain the incoherent power, we have to subtract the
mean-squared power from the total power. That is,〈
Es

qpE
s
qp

∗
〉
−

〈
Es

qp

〉 〈
Es

qp

〉∗
=

〈
Ek

qpE
k
qp

∗〉 −
〈
Ek

qp

〉 〈
Ek

qp

〉∗

+
〈
Ec

qpE
c
qp

∗
〉
−

〈
Ec

qp

〉 〈
Ec

qp

〉∗

+2Re
[〈

Ec
qpE

k
qp

∗〉 −
〈
Ec

qp

〉 〈
Ek

qp

〉∗]
(7)

The incoherent scattered power includes the Kirchhoff, cross and
complementary scattered power. To carry out the average operation
we must make an assumption about the type of surface height
distribution. For the purpose of illustration we assume Gaussian height
distribution here. The ensemble average scattered Kirchhoff, Cross
and complementary terms are represented below respectively. The
Kirchhoff ensemble average scattered power is

P k
qp =

〈
Ek

qpE
k
qp

∗〉 −
〈
Ek

qp

〉 〈
Ek

qp

〉∗

= |CEofqp|2
{〈∫∫

exp
[
j(�ks − �ki) · (�r − �r ′)

]
dx′dy′dxdy

〉

−
∣∣∣∣
〈∫

exp
{
j

[
(�ks − �ki) · �r

]}
dxdy

〉∣∣∣∣2
}

(8)

The cross scattered power is

P kc
qp = 2Re

[〈
Ec

qpE
k
qp

∗〉 −
〈
Ec

qp

〉 〈
Ek

qp

〉∗]
= |(CEo)/(2π)|2 Re

{∫
(Fqpf

∗
qp)∫∫ 〈

exp
[
j�ks · (�r − �r ′′) + j�ki · (�r ′′ − �r ′)

+ju(x− x′) + jv(y − y′) − jq|z − z′|
]〉

−
〈∫∫

exp
[
j(�ks · �r ) − j(�ki · �r ′)

+ju(x− x′) + jv(y − y′) − jq|z − z′|
]〉

〈∫
exp

{
j

[
(�ki − �ks) · �r ′′

]}
dxdydx′dy′dx′′dy′′dudv

〉 }
(9)

and the complementary scattered power becomes

P c
qp =

〈
Ec

qpE
c
qp

∗
〉
−

〈
Ec

qp

〉 〈
Ec

qp

〉∗
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=
∣∣∣(CEo)/(8π2)

∣∣∣2 Re
{∫

(FqpF
∗
qp)∫∫∫∫ 〈

exp
[
j�ks · (�r − �r ′′) + j�ki · (�r ′′′ − �r ′)

+ju(x− x′) − ju′(x′′ − x′′′) + jv(y − y′)

−jv′(y′′ − y′′′) − jq|z − z′| + jq′|z′′ − z′′′|
]〉

dxdx′dx′′dx′′′dydy′dy′′dy′′′dudvdu′dv′

−
∣∣∣∣
〈∫∫∫

Fqp exp
[
j�ks · �r − j�ki · �r ′ + ju(x− x′)

+jv(y − y′) − jq|z − z′|
]
dxdx′dydy′dudv

〉∣∣∣∣2 (10)

The bistatic scattering coefficient is related to the ensemble average
scattered power expression as

σ0
qp = (4πR2Pqp)/(E2

0A0) (11)

The incoherent ensemble average scattered power can be expressed
as the summation of Kirchhoff, cross and complementary scattered
power. Therefore the bistatic scattering coefficient can be summarized
by Kirchhoff, cross and complementary scattered coefficient.

σ0
qp = σk

qp + σkc
qp + σc

qp (12)

For evaluating the ensemble average we assume the rough surface
is a Gaussian-distributed surface. The Fourier transform of the nth
power of the Gaussian correlation function is

W (n)(K) =
∞∫
0

ρn(ξ)Jo(Kξ)ξdξ =
L2

2n
exp

[
−(KL)2

4n

]
(13)

Therefore, the Fourier transform of the nth power of the Gaussian
correlation function for numerical calculation can be expressed as

W (n)(Ksx − kx, kxy − ky)

=
L2

2n
exp

[
−

[
(Ksx − kx)2 + (ksy − ky)2

]
L2

4n

]

=
L2

2n
exp

[
−(kL)2[(sin θscosφs−sin θ cosφ)2+(sin θs sinφs−sin θsinφ)2]

4n

]

(14)
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Finally we split the scattering coefficient into two terms: a
scattering coefficient for single scattering and the other one for multiple
scattering. The single scattering terms are represented by terms with
only one sum and do not involve the integration, while terms with more
than one sum and the integration represent multiple scattering. The
double sum term requires integration indicating the interaction among
surface spectral components and hence represents multiple scattering.

The method of correction in single scattering is to multiply the
scattering coefficient by the shadowing function. We summed up
all terms including upward and downward single scattering for the
single scattering coefficient. The single scattering coefficient with the
Gaussian roughness spectrum and shadowing function for numerical
calculation becomes

σs
qp = s(θin) · s(θ) · (kL)2

4
e−(kσ)2(cos θ2

s+cos θ2) ·
∞∑

n=1

(kσ)2n|Iqp|2

exp

{
−(kL)2

4n
[(sin θs cosφs−sin θ cosφ)2+(sin θs sinφs−sin θ sinφ)2]

}

n · n!
(15)

where the item |Iqp|2, the sum of three items, Kirchhoff, cross and
complementary, is

|Iqp|2 = (cos θs + cos θ)2n|fqp|2 exp[−2(kσ)2 cos θs cos θ

+
1
2

{
f∗

qpFqp(−kx, ky)
[
cn
1 (kz)r1(kz) + cn

1 (−kz)r1(−kz)
]

+ f∗
qpFqp(−ksx,−ksy)

[
cn
2 (ksz)r1(ksz) + cn

2 (−ksz)r1(−ksz)
]}

+
1
16

{
|Fqp(−kx,−ky)|2

[
cn
3 (kz, kz)r2(kz, kz)

+cn
3 (kz,−kz)r2(kz,−kz) + cn

3 (−kz, kz)r2(−kz, kz)

+cn
3 (−kz,−kz)r2(−kz,−kz)

]
+Fqp(−kx,−ky)F ∗

qp(−ksx,−ksy)

·
[
cn
5 (kz, ksz)r2(kz, ksz) + cn

5 (kz,−ksz)r2(kz,−ksz)

+ cn
5 (−kz, ksz)r2(−kz,−ksz) + cn

5 (−kz,−ksz)r2(−kz,−ksz)
]

+F ∗
qp(−kx,−ky)Fqp(−ksx,−ksy)

[
cn
6 (ksz, kz)r2(ksz, kz)

+cn
6 (ksz,−kz)r2(ksz,−kz) + cn

6 (−ksz, kz)r2(−ksz, kz)

+ cn
6 (−ksz,−kz)r2(−ksz,−kz)

]
|Fqp(−ksx,−ksy)|2
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·
[
cn
4 (ksz, ksz)r2(ksz, ksz) + cn

4 (ksz,−ksz)r2(ksz,−ksz)

+cn
4 (−ksz, ksz)r2(−ksz, ksz)+cn

4 (−ksz,−ksz)r2(−ksz,−ksz)
]}

where

c1(q) = (cos θs − q) cos θs + cos θ)
c2(q) = (cos θ + q) cos θs + cos θ)
r1(q) = exp[−(kσ)2(cos θ cos θs + q2 − cos θs · q + cos θ · q)]

c3(q, q′) = (cos θs − q)(cos θs − q′)
c4(q, q′) = (cos θs + q)(cos θ + q′)
c5(q, q′) = (cos θs − q)(cos θ + q′)
c6(q, q′) = (cos θ + q)(cos θs − q′)

r2(q, q′) = exp
{
−(kσ)2[q2 + q′2 − cos θs(q + q′) + cos θ(q + q′)]

}

ksz = cos θs

kz = cos θ

2.2. Shadowing Functions

From Figure 2 the upward and downward multiple scattering
coefficients need to be modified by the shadowing function. When
the incident ray impinges on a randomly rough surface, a fraction, s,
of the upward scattered signal leaves the surface interface permanently.
The other part, 1− s, of the upward scattered signal is intercepted by
the surface. This latter portion of the upward scattering coefficient
becomes a source for multiple scattering. The downward scattered
signal is intercepted by the surface and becomes the other kind of
source for multiple scattering.

For multiple scattering two kinds of shadowing functions are
needed to correct the multiple scattering coefficient: The first kind
of the shadowing function is a function of the incident angle. The
correction method is to multiply the scattering coefficient by the
shadowing function directly. The second kind of shadowing function
depends upon the incident angle of the rescattered field. Thus, the
second correction method is to integrate the shadowing function. That
means that the portion of the rescattered field intercepted by the
surface along every direction needs to be modified by the shadowing
function. The multiple scattered coefficient is modified by multiplying
the first kind of the shadowing function s(θin) and s(θs) outside the
integrals. Inside the integrals the upward scattering coefficient is
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scattering, S(      )re

sθ

Figure 2. upward and downward scatterings.

modified by the second shadowing function, 1−s(θ), and the downward
scattering coefficient is modified by the shadowing function s(θ). The
total multiple-scatter scattering coefficient is the summation of upward
and downward scattering coefficients.

For numerical calculation of ensemble average we assume the
correlation coefficient ρ(ξ, ς) to be Gaussian given by

ρ(ξ, ς) = exp[−(ξ2 + ς2)/l2] (16)

The properties of its partial derivative are

ρξ(ξ, ς) =
−2ξ
l2

· exp[−(ξ2 + ς2)/l2] (17)

and
ρς(ξ, ς) =

−2ς
l2

· exp[−(ξ2 + ς2)/l2] (18)

The values of the second partial derivative about the origin are
therefore

ρξξ(0) =
−2
l2

(19)

ρςς(0) =
−2
l2

(20)
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and
ρξς(0) = 0 (21)

2.3. Scattering Coefficients with Shadowing Functions

The multiple scattering coefficient with shadowing function inside and
outside the integral for numerical calculation is therefore expressed as

σm
qp(L)(total) = σm

qp(L)(upward) + σm
qp(L)(downward) (22)

where

σm
qp(L)(upward) =

s(θin)s(θ)
(kL)4

16π(kσ)4

{
1
2

∫
Re

[
f∗

qpFqp(u, v)
]
· c1(q)c2(q)

+
1
16

∫
|Fqp(u, v)|2

[
c3(q, q′)c4(q, q′)+c3(q,−q′)c4(q,−q′)

]
+

1
16

∫
Fqp(u, v)F ∗

qp(−u− ksx − kx,−v − ksy − ky)[
exp

[
−(kσ)2(cos θs−cos θ−q−q′)2

]
c5(q, q′)c6(q, q′)+

exp
[
−(kσ)2(cos θs−cos θ−q+q′)2

]
c5(q,−q′)c6(q,−q′)

]

+
(

1
4

)
(kL)2

8π

∫
Fqp(u, v)

{∫
F ∗

qp(u
′, v′)

 ∞∑
n=1

[(kσ)2(cos θs − cos θ − q − q′)2]nW (n)(. . .)
n!

·c5(q, q′)c6(q, q′) exp[−(kσ)2(cos θs − cos θ − q − q′)2]

+
∞∑

n=1

[(kσ)2(cos θs − cos θ − q + q′)2]nW (n)(. . .)
n!

·c5(q,−q′)c6(q,−q′) exp[−(kσ)2(cos θs−cos θ−q+q′)2]
]

[1 − s(θ)]x2dx2dδ

}}
[1 − s(θ)]xdxdδ

and

σm
qp(L)(downward) =

s(θin)s(θ)
(kL)4

16π(kσ)4

{
1
2

∫
Re

[
f∗

qpFqp(u, v)
]
· c1(−q)c2(−q)
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+
1
16

∫
|Fqp(u, v)|2

[
c3(−q, q′)c4(−q, q′)+c3(−q,−q′)c4(−q,−q′)

]
+

1
16

∫
Fqp(u, v)F ∗

qp(−u− ksx − kx,−v − ksy − ky)[
exp

[
−(kσ)2(cos θs−cos θ+q−q′)2

]
c5(−q, q′)c6(−q, q′)+

exp
[
−(kσ)2(cos θs−cos θ+q+q′)2

]
c5(−q,−q′)c6(−q,−q′)

]

+
(

1
4

)
(kL)2

8π

∫
Fqp(u, v)

{∫
F ∗

qp(u
′, v′)

 ∞∑
n=1

[(kσ)2(cos θs − cos θ + q − q′)2]nW (n)(. . .)
n!

·c5(−q, q′)c6(−q,−q′) exp[−(kσ)2(cos θs − cos θ + q − q′)2]

+
∞∑

n=1

[(kσ)2(cos θs − cos θ + q + q′)2]nW (n)(. . .)
n!

·c5(−q, q′)c6(−q, q′) exp[−(kσ)2(cos θs−cos θ+q+q′)2]
]

s(θ)x2dx2dδ

}}
s(θ)xdxdδ

where

c1(q) =
exp

[
− (kL)2 · SXY ′

4(kσ)2(cos θs − q)(cos θs + cos θ)

]

(cos θs − q)(cos θs + cos θ)

c2(q) =
exp

[
− (kL)2 ·XY ′

4(kσ)2(cos θs + q)(cos θs + cos θ)

]

(cos θs + q)(cos θs + cos θ)

c3(q, q′) =
exp

[
− (kL)2 · SXY ′

4(kσ)2(cos θs − q)(cos θs − q′)

]

(cos θs − q′)(cos θs − q′)

c4(q, q′) =
exp

[
− (kL)2 ·XY ′

4(kσ)2(cos θ + q)(cos θ + q′)

]

(cos θ + q′)(cos θ + q′)
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c5(q, q′) =
exp

[
− (kL)2 · SXY ′

4(kσ)2(cos θs − q)(cos θ + q′)

]

(cos θs − q′)(cos θ + q′)

c6(q, q′) =
exp

[
− (kL)2 ·XY ′

4(kσ)2(cos θ + q)(cos θ − q′)

]

(cos θ + q′)(cos θs − q′)
SXY ′ = (sin θs cosφs + x cos δ)2 + (sin θs sinφs + x sin δ)2

XY ′ = (sin θ cosφ + x cos δ)2 + (sin θ sinφ + x sin δ)2 (23)

and

W
(n)(. . .) =

1
2n

exp

[
−(kL)2(x cos δ + x2 cos δ2 + sin θs cosφs + sin θ cosφ)2

4n

]

· exp

[
−(kL)2(x sin δ + x2 sin δ2 + sin θs sinφs + sin θ sinφ)2

4n

]

≡ W (n)(. . .)/L2 (24)

The last terms with four integrals in the multiple scattering
coefficient is small. If the term (ksz − kz ± q± q′) is small, the term of
(ksz−kz±q±q′)2 has a relatively small value compare to the other terms
in multiple scattering coefficient. If (ksz −kz ±q±q′) term is large, the
factor, exp[−σ2(ksz −kz ± q± q′)2], makes the four-integral term small
comparing to the other terms in the multiple scattering coefficient.
Thus, the four-integral term takes a long time in calculation; it can be
ignored and has very little effect on the final result.

3. SHADOWING FUNCTIONS

The explicit focus of the shadowing functions for the incident and
scattered waves are (1) In single scattering the shadowing function for
the incident waves depends upon the cotangent of the incident angle.
The incident shadowing function s(θin, σs) is

s(θin, σs) =
[
1 − 1

2
erfc

(
cot θin

σs

√
2

)]
[1 + f(θin, σs)]−1 (25)

where

f(θin, σs) =
1
2

{√
2
π

σs

√
2

cot θin
exp

(
−cot θ2

in

2σ2
s

)
− erfc

(
cot θin

σs

√
2

)}
(26)
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(2) In single scattering the shadowing function for the scatter waves
depends upon the cotangent of the scatter angle, cot θs. The scatter
shadowing function s(θs, σs) is

s(θs, σs) =
[
1 − 1

2
erfc

(
cot θs

σs

√
2

)]
[1 + f(θs, σs)]−1 (27)

where

f(θs, σs) =
1
2

{√
2
π

σs

√
2

cot θs
exp

(
−cot θ2

s

2σ2
s

)
− erfc

(
cot θs

σs

√
2

)}
(28)

3.1. Shadowing Functions under the Integral Sign

The rescattered shadowing function s(θ, σs) inside the integration is
expressed as

s(θ, σs) = s(x, σs) =
[
1 − 1

2
erfc

(
cot θ
σs

√
2

)]
[1 + f(θ, σs)]−1 (29)

where

f(θ, σs) =
1
2

{√
2
π

σs

√
2

cot θ
exp

(
−cot θ2

2σ2
s

)
− erfc

(
cot θ
σs

√
2

)}
(30)

In multiple scattering the shadowing function depends upon the
cotangent of the incident angle θre of the rescattered field, i.e.,

cot θre =
√
k2 − u2 − v2

√
u2 + v2

=
√

1
x2

− 1 (31)

where

u = r cos δ (32)
v = r sin δ (33)

and x is the normalized value of r, i.e.

x =
r

k
(34)

The different u and v value of the shadowing function in multiple
scattering represents different scattering directions.
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4. MODEL PREDICTION

To assess the conditions under which multiple scattering becomes
important, we show the effect of surface parameters (surface standard
deviation, surface correlation length) and operation frequency. In
general the single scattering is the major contribution to the
like-polarized scattering, but the multiple scattering is the only
contribution to the cross-polarized scattering. The model predictions
shown in this section to predict the depolarized bistatic scattering
behavior is based upon the integral equation pairs.

4.1. Contribution Comparisons of Single and Multiple
Scattering

First we show the comparisons of depolarized single and multiple
scattering from two rough surfaces in Figures 3 and 4. Two rough
surface have the same surface parameters; normalized surface height
of 4.4 and normalized surface correlation length of 13.2, but their
dielectric constant are different. One rough surface has water-soaked
form bricks material with an estimated relative dielectric constant of 62
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Figure 3. Comparisons of single(s), total(t) multiple and the
summation of single and multiple(s + t) scattering coefficients from a
rough surface with normalized surface height of 4.4, normalized surface
correlation length of 13.2 and dielectric constant of 62. The incident
angle is chosen to be 20 degree.
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Figure 4. Comparisons of single(s), total(t) multiple and the
summation of single and multiple(s + t) scattering coefficients from a
rough surface with normalized surface height of 4.4, normalized surface
correlation length of 13.2 and complex dielectric constant of 7.3+i4.5.

(εr = 62), but the other one has the complex relative dielectric constant
of 7.3+i4.5 (εr = 7.3+j4.5). In Figures 3 and 4 the depolarized bistatic
scattering are generally dominated by multiple scattering along the
plane of incidence, because its single scattering term is negligible in this
specular plane. The effect of backscattering enhancement is normally
accompanied by a large depolarized component. The enhancement
peak usually has a small angular width, typically 2 to 3 degrees.

4.2. Upward and Downward Multiple Scattering

For depolarized bistatic scattering the depolarized backscatter
enhancement comes mainly from the constructive interference of
multiple scattering from Figures 3 and 4. In this section we compare
the contributions of upward and downward scattering strength to
the backscatter enhancement from rough surfaces along the plane of
incidence. In Figures 5 through 8 we show the comparisons of upward,
downward and total multiple scattering coefficients from a perfectly
conducting rough surface and two dielectric rough surface with
normalized surface height of 4.4. Two normalized surface correlation
lengths are 13.2 and 17.6 respectively. Two relative dielectric constants
are 62 and 7.3 + i4.5. In Figures 5 through 8 the scatter pattern of
backscatter enhancement comes from the contribution of both upward
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Figure 5. Comparisons of upward(u), downward(d) and total(t)
multiple scattering coefficients from perfectly conducting rough
surfaces normalized surface height of 4.4 and normalized surface
correlation length of 17.6.
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Figure 6. Comparisons of upward(u), downward(d) and total(t)
multiple scattering coefficients from a dielectric rough surface with
normalized surface height of 4.4, normalized surface correlation length
of 17.6 and dielectric constant of 62.
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Figure 7. Comparisons of upward(u), downward(d) and total(t)
multiple scattering coefficients from a dielectric rough surface with
normalized surface height of 4.4, normalized surface correlation length
of 13.2 and complex dielectric constant of 7.3 + i4.5.
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Figure 8. Comparisons of upward(u), downward(d) and total(t)
multiple scattering coefficients from a dielectric rough surface with
normalized surface height of 4.4 with the wavenumber k (kσ = 4.4),
normalized surface correlation length of 17.6 and complex dielectric
constant of 7.3+i4.5.
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Figure 9. Comparisond of model prediction of depolarized multiple
scatterng with the measured data from rough surface with normalized
surface rms height of 4.4 with the wavenumber k (kσ = 4.4),
normalized surface correlation length of 13.2 with the wavenumber
k (kσ = 4.4) and dielectric surface of 62.

and downward scattering and the strength of downward scattering is
always larger than that of upward scattering. The scatter energy may
transfer among in the upward and downward directions. The amount
of energy transfer depends upon the surface roughness; surface rms
height, surface correlation length and rms surface slope. The strength
of upward scattering in the forward scattering direction is always larger
than that in the backward direction, but the strength of downward
scattering in the forward scattering direction is always less than that in
the backward direction. This phenomenon happens due to the energy
transfer and surface parameters. With the comparisons of bistatic
scattering pattern shown in Figures 7 and 8, the upward scattering
strength increases and downward scattering strength decreases for
rough surface with smaller rms surface slope in Figure 8. Further
increase in surface rms slope causes the specular peak to disappear
and a significant backscattering enhanced peak to appear.
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Figure 10. Comparisond of model prediction of depolarized multiple
scatterng with the measured data from a perfectly conducting rough
surface with normalized surface rms height of 4.4 with the wavenumber
k (kσ = 4.4) and normalized surface correlation length of 13.2. The
incident angle is chosen to be 20 degree.

5. COMPARISONS WITH MEASUREMENTS

To evaluate the validity of model prediction for the depolarized
multiple scattering for very rough surfaces we compare the level and
trend of depolarized scattering coefficient of model prediction with
the measured data. The measurements shown were acquired from
three rough surfaces with different dielectric constant. The normalized
surface correlation length is 13.2 with the wavenumber k (kL = 13.2)
and surface standard deviation is 4.4 with the wavenumber k (kσ =
4.4). The incident angle is chosen to be 20 degrees. In Figures 9 and 10
the specular peak and the backscattering peak decreases for the surface
dielectric constant decreases due to scatter energy transmitting into
the second medium. Figure 10 shows the comparisons of the model
prediction of bistatic scattering behavior with the measurements at an
incident angle of 20 degrees from a perfectly conducting rough surface
in the incidence plane. The difference among two models is less than a
dB. For further evaluating the model developed in this paper we also
compare the integral equation model’s prediction with the measured
data from rough surface with dielectric constant of 62 and find the
difference is still less than a dB.
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APPENDIX A.

Using the transformation of coordinate system, two terms of ensemble
average with multiple random variables and the absolute phase terms
are listed below:〈

exp[jksz(z − z′′) − jkz(z′′ − z′)] − jq|z − z′|
〉

=
1
2

exp
{
σ2 [

(ksz−q)(ksz+kz)ρ2(ξ, ς)+(kz+q)(ksz+kz)ρ3(ξ′, ς ′)
]}

· exp
{
−

[
k2

sz+k2
z +kszkz+q2 − qksz+qkz+(kszkz−q2+qksz−qkz)

ρ1(ξ − ξ′, ς − ς ′)
]
σ2

}
+

1
2

exp
{
σ2 [

(ksz+q)(ksz+kz)ρ2(ξ, ς)+(kz−q)(ksz+kz)ρ3(ξ′, ς ′)
]}

· exp
{
−

[
k2

sz+k2
z +kszkz+q2 + qksz−qkz+(kszkz−q2−qksz+qkz)

ρ1(ξ − ξ′, ς − ς ′)
]
σ2

}
(A1)〈

exp[jkszz + jkzz
′] − jq|z − z′|

〉
=

1
2

exp
{
−

[
k2

sz + k2
z + 2(q2 − qksz + qkz)

+2(kszkz − q2 + qksz − qkz)ρ1(ξ − ξ′, ς − ς ′)
]
(σ2/2)

}
+

1
2

exp
{
−

[
k2

sz + k2
z + 2(q2 + qksz − qkz)

+2(kszkz − q2 − qksz + qkz)ρ1(ξ − ξ′, ς − ς ′)
]
(σ2/2)

}
(A2)

REFERENCES

1. Ailes-Sengers, L., A. Ishimaru, and Y. Kuga, “Analytical
and experimental studies of electromagnetic waves scattered by
two-dimensional, dielectric very rough surfaces,” International
Geoscience and Remote Sensing Symposium, Vol. 2, 1349–1351,
1995.

2. Johnson, J. T., R. T Shin, L. Tsang, C. H. Chan, A. Ishimaru,
and Y. Koga, “Backscattering enhancement of electromagnetic
waves from two-dimensional perfectly conducting random rough
surfaces: A comparison of Monte Carlo simulations with
experimental data,” IEEE Transactions on Antennas and
Propagations, Vol. 44, No. 5, 748–755, 1996.

3. Kuga, Y. and H. Zhao, “Experimental studies on the phase



Progress In Electromagnetics Research, PIER 54, 2005 219

distribution of two copolarized signals scattered from two-
dimensional rough surfaces,” IEEE Transactions on Geoscience
and Remote Sensing, Vol. 34, No. 2, 601–603, 1996.

4. Ocla, H. E. and M. Tateiba, “Backscattering enhancement in radar
cross-section for concave-convex targets in random media,” IEEE
2000 International Geoscience and Remote Sensing Symposium,
Vol. 4, 1720–1722, 2000.

5. Hsieh, C.-Y., “Dependence of backscattering enhancement
from randomly very rough surfaces,” IEEE 1999 International
Geoscience and Remote Sensing Symposium, Vol. 4, 2197–2199,
1999.

6. Hsieh, C.-Y. and A. K. Fung, “Application of an extended IEM to
multiple surface scattering and backscatter enhancement,” IEEE
International Geoscience and Remote Sensing, Vol. 2, 702–704,
1997.

7. Poggio, A. J. and E. K. Miller, Integral Equation Solution of
Three Dimensional Scattering Problems, Computer Techniques for
Electromagnetics, Chapter 4, Pergamon, New York, 1973.

8. Smith, R. G., “Geometrical shadowing of randomly rough
surfaces,” IEEE Trans. Antenna Propagation, Vol. AP-15, 668–
671, 1967.

Chin-Yuan Hsieh was born in Kaohsiung, Taiwan, R.O.C.. He
received the B.S. degree from the National Taiwan Ocean University,
the M.S. degree from the University of Missouri at Columbia, and the
Ph.D. degree from The University of Texas at Arlington respectively,
all in Electrical Engineering. In 1980, he passed the highest civil
examination of electrical engineering in Taiwan. From 1982 to 1986,
he was the director of the Department of Quality Control at the
Bureau of Quality Inspection, Ministry of Economics in Taiwan,
where he supervised studies in electromagnetic interference. From
1986 to 1988, he was the Director of the Microwave Communication
Department, Taipei City Broadcasting Station where he supervised
the design, development, and the construction of the microwave
communication and links. In 1990, he became a faculty member
at National Kaohsiung Marine University, where he is currently
a full professor in the department of Electronics Communications
Engineering. He is also an Engineering Dean in the college of marine
Engineering and also the dean of the Night School & Extension
Education at National Kaohsiung Marine University. He is author
of Electromagnetics, Chuan-Hwa Books Co., Taipei, Taiwan, 1996



220 Hsieh and Fung

and author of Communications System, Chuan-Hwa Books Co.,
Taipei, Taiwan, 1996. He received the 1999 distinguished research
award from National Science Foundation, Taiwan, R.O.C. He is also
rewarded a “Marquis Who’s Who in the World, The chronicle of
Human Achievement” in 2003 and 2004. His main research interests
concern the model development of bistatic and multistatic polarimetric
scattering, remote sensing, radar imaging, subsurface sensing, and
numerical techniques in electromagnetics. Dr. Hsieh is a member of
Institute of Electrical and Electronic Engineers (IEEE), Tau Beta Pi,
and Alpha Beta Delta.

Adrian K. Fung has been conducting funded research sponsored by
the National Science Foundation, U.S. Army Research Office, Navy,
DARPA, NASA and other U.S. government agencies. He was with the
Electrical Engineering Department of the University of Kansas from
1965 to 1984. He has been a consultant to the U.S. Army, U.S. Navy,
NASA, the European Space Agency, and the International Advisory
Panel in Washington, D.C. He is the author of Microwave Scattering
Models and Their Applications, 1994, and a co-author of a three volume
series on Microwave Remote Sensing. He is the recipient of an award
from the European Chapter of the IEEE Geoscience and Remote
Sensing Society for his contribution to microwave scattering theory
in 1984, and he also received the Distinguished Achievement Award
from IEEE Geoscience and Remote Sensing Society in 1989. Dr. Fung
is a Fellow of the Institute of Electrical and Electronic Engineers.


