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Abstract—A very efficient and accurate method to characterize the
electromagnetic scattering from periodic arrays of two-dimensional
composite cylindrical objects with internal eccentric cylindrical
scatterers is presented, using the lattice sums formula and the
aggregate T-matrix for cylindrical structures. The method is quite
general and applies to various configurations of two-dimensional
periodic arrays. The dielectric host cylinder per unit cell of the
array can contain two or more eccentric cylindrical scatterers (we call
them inclusions in this paper), which may be dielectric, conductor,
gyrotropic medium, or their mixture with different sizes. The power
reflection coefficients from one-layer or one-hundred-layered periodic
arrays of composite cylinders with up to two inclusions have been
numerically studied. The effect of the presence of inclusions on the
properties of resonance peaks or the stopband’s width will be discussed.
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1. INTRODUCTION

Periodic dielectric or metallic structures have been a subject
of continuing interest for applications to frequency selective or
polarization selective devices in microwaves and optical waves. Various
analytical or numerical techniques [1–3] have been developed to
formulate the electromagnetic scattering from the periodic scatterers.
Very recently, photonic bandgap structures (PBG’s) [4, 5] in discrete
periodic systems has received a growing attention, because they
have many potential applications to narrow-band filters, high-quality
resonant cavities, substrates for antennas and wave guides, and
so forth. A periodic array of cylindrical scatterers is typical of
discrete periodic structures. The frequency response of the array is
characterized by the scattering properties per unit cell and the multiple
scattering effects peculiar to the periodic arrangement of scatterers.

In this paper, we present a very accurate and efficient method
for analyzing the electromagnetic scattering from periodic arrays of
composite cylindrical objects, using the lattice sums technique [6] and
the aggregate T-matrix [7] for a composite-cylinders system. The
method is quite general and applies to a variety of configurations of
periodic arrays of composite cylindrical objects. The dielectric host
cylinder per unit cell can contain two or more eccentric cylinders, which
may be dielectric, conductor, gyrotropic medium, or their mixtures
with different dimensions. The scattered fields can be expressed in
terms of the aggregate T-matrix for the composite cylinders located
within a unit cell and the lattice sums characterizing the periodic
arrangement of scatterers. The aggregate T-matrix is substantially
changed by the inclusions’ geometric parameters such as permittivity,
size and location. As numerical examples, reflection characteristics of
plane wave from one-layer or one-hundred-layered periodic arrays of
composite cylinders with up to two inclusions for the fundamental
and the first order space harmonics have been investigated. The
effect of the presence of inclusions on the behaviour of reflection
coefficient has been studied. It has been shown that in case of one
inclusion per unit cell the resonance response in reflectance could
be independent of polarizations. The inclusions would also refine
directivity of the periodic arrays. Resonance peaks or stopband’s width
could be controllable by adjusting the inclusions’ parameters for both
polarizations.
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Figure 1. Cross section of a periodic array of cylindrical objects
located at y = 0.

2. FORMULATION

First of all, we discuss the formulation for a periodic array consisting
of homogeneous host cylinders using the lattice sums technique and
the T-matrix approach. A periodic array of cylindrical objects is
situated in a background medium with a wave number k0 as shown
in Fig. 1. The cylinders are infinite long, parallel to each other, and
spaced with a distance h along the x axis on the plane y = 0, which
separates the whole space into two semi-infinite regions assigned I and
II, respectively. We consider the scattering of an electromagnetic plane
wave whose direction of incidence is normal to the cylinder axis. The
problem is then reduced to a two-dimensional one and may be treated
separately for TM and TE waves relative to the z axis.

A plane wave with a unit amplitude is incident from the upper
half-space y > 0. The wavevector forms an angle φ0 relative to
the x axis and its x component is kx0 = k0 cosφ0. The incident
plane wave is expanded in terms of the cylindrical wave functions in
a polar coordinate with the origin O at (0, 0). The scattered field
from the array is also expressed in the polar coordinate with the
origin O at (0, 0), using the lattice sums technique and a recursive
algorithm for T-matrix. Let Ψ(x, y) denote the Ez field for TM -
wave problem and the Hz field in TE-wave problem, respectively.
Using the recurrence formula and Fourier integral representation for
Hankel functions, the scattered field can be finally obtained in terms
of the Floquet space-harmonic waves in the xOy coordinate system.
After several manipulations, the reflected field Ψr

l (x, y) of the l-th
space-harmonic in the upper half-space y > 0 and the corresponding
transmitted field Ψt

l(x, y) in the lower half-space y < 0 for downgoing
incident plane wave are deduced as follows [8]:

Ψr
l (x, y) = uT

l · ascei[kx,lx+κly] (l = 0,±1,±2, · · ·) (1)
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Ψt
l(x, y) = (δl,0 + vT

l · asc)ei[kx,lx−κly] (2)

with

ul =
[
2(−i)m(kx,l + iκl)m

hκlk
m
0

]
(m = 0,±1,±2, · · ·) (3)

vl =
[
2(−i)m(kx,l − iκl)m

hκlk
m
0

]
(4)

asc = (I − T · L)−1 · T · ain (5)

ain = [imeimφ0 ] (6)

kx,l = k0 cosφ0 +
2lπ
h

(7)

κl =
√
k2

0 − k2
x,l (8)

where the vector quantities characterized by the index m are defined
as column vectors, the superscript T indicates the transpose of vectors,
ain and asc represent the amplitude vectors of the incident plane wave
and the scattered wave, respectively, based on field expansions in terms
of cylindrical wave functions, ul and vl are vectors which transform
the cylindrical waves to plane waves of the l-th space-harmonics, δl,0

is the Kronecker’s delta, and I is the unit matrix. In Eq. (5), T is the
T-matrix of the isolated homogeneous cylinder whose center is located
at the origin (0, 0), and L is a square matrix whose element Lmn is
defined by

Lmn = Sm−n(k0h, cosφ0) (9)

Sn(k0h, cosφ0) =
∞∑
l=1

H(1)
n (lk0h)e−ilk0h cos φ0

+(−1)n
∞∑
l=1

H(1)
n (lk0h)eilk0h cos φ0 (10)

where H
(1)
n is the n-th order Hankel function of the first kind. The

semi-infinite sum Sn(k0h, φ0) of the Hankel functions is the n-th order
lattice sum [9]. Since the direct sum of Hankel functions in Eq. (10)
converges very slowly, we calculate it by using the integral form referred
to [6]. It follows from Eqs. (1) and (2) that the scattering process
through the array plane is described in terms of the reflection coefficient
rl and the transmission coefficient fl as

rl = uT
l · asc (11)

fl = δl0 + vT
l · asc (12)
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Figure 2. Cross sectional view of composite circular cylinders with
L inclusions per unit cell. εi, µi, ai, di and θi (i = 1, 2, · · · , L) denote
the i-th inclusion’s permittivity, permeability, radius, distance from
the origin and angle measured from the x axis, respectively. Subscript
L+1 denotes the host cylinder.

which relate the incident plane wave to the reflected and transmitted
l-th space harmonics in the respective half-spaces.

3. AGGREGATE T-MATRIX

When a unit cell of the periodic array consists of a composite cylinder
with multiple cylindrical inclusions eccentrically located inside the host
cylinder, we can obtain the solution by combining both the lattice sums
related to the periodic arrangement and the aggregate T-matrix [7]
which characterizes the scattering properties of the whole cylindrical
elements located within a unit cell. Let us consider a composite host
cylinder with L-cylindrical inclusions, in general, as shown in Fig. 2.
Provided that each inclusion is a circular cylindrical object and the T-
matrix of each inclusion in isolation could be calculated, we summarize
here the expressions for the aggregate T-matrix of the composite host
cylinder with L inclusions in the unit cell for both TM and TE wave
[10].

T L+1 = −[η0H
′
0 − ηL+1F

′
L+1 · F−1

L+1 · H0]−1

×[η0J
′
0 − ηL+1F

′
L+1 · F−1

L+1 · J0] for TM wave (13)

T L+1 = −[ηL+1H
′
0 − η0F

′
L+1 · F−1

L+1 · H0]−1

×[ηL+1J
′
0 − η0F

′
L+1 · F−1

L+1 · J0] for TE wave (14)
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F L+1 = JL+1 + HL+1 · T L (15)
F ′

L+1 = J ′
L+1 + H ′

L+1 · T L (16)

T L =
L∑

i=1

β0,i · T i(L) · βi,0 (17)

with

J i = [Jm(ki aL+1)δm,m′ ],
J ′

i = [J ′
m(ki aL+1)δm,m′ ] (i = 0, L+1) (18)

H i = [H(1)
m (ki aL+1)δm,m′ ], H ′

i = [H(1)′
m (ki aL+1)δm,m′ ] (19)

ki = ω
√
εiµi, ηi =

√
εi/µi, (20)

where δm,m′ is the Kronecker’s delta, Jn is the n-th order Bessel
function, H(1)

m is the m-th order Hankel function of the first kind, and
the prime on the Bessel and Hankel functions denotes their derivatives
with respect to the indicated arguments. Subscript L+1 denotes the
host cylinder. In Eq. (17), T L represents the aggregate T-matrix for
the L inclusions inside the host cylinder. It can be derived from a
recursive algorithm, i.e., the aggregate T-matrix for L inclusions is
calculated from both the aggregate T-matrix for L−1 inclusions and
the L-th inclusion’s isolated T-matrix [7, 10]. T i(L) is the T-matrix for
the i-th cylinder in the presence of L cylinders in the host medium
of infinite extent, and βi,j is the translation matrix [7] for the regular
part of cylindrical harmonics between the i and j coordinates.

Thus, in case when there are many cylindrical inclusions
eccentrically located in the host cylinder in a unit cell as shown in
Fig. 3, we can easily obtain the solution by substituting the aggregate
T-matrix Eq. (13) or Eq. (14) alternatively into the T-matrix in the
right hand side of Eq. (5).

Figure 3. Cross section of a periodic array of composite cylindrical
objects with internal scatterers.

4. MULTILAYERED SYSTEM

When the periodic array of the composite dielectric cylinders is
multilayered as shown in Fig. 4, it constitutes a two-dimensional
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Figure 4. Cross section of a square lattice periodic array of composite
cylindrical objects with internal scatterers.

photonic band gap structure. In the layered system, the multiple
interaction of space-harmonics scattered from each of array layers
modifies the frequency response and the photonic bandgaps or
stopbands are formed in which any electromagnetic wave propagation
is forbidden within a fairly large frequency range. In this paper, we
have employed an accurate and efficient method for analyzing the
electromagnetic scattering from the multilayered periodic arrays of
circular cylinders, using the combination of the generalized reflection
and transmission matrices [11] and the lattice sums technique discussed
above. We have omitted to describe the details of the formulation of
generalized reflection and transmission matrices, however, please see
the reference [12].

5. NUMERICAL EXAMPLES

The reflection characteristics of periodic arrays of circular dielectric
cylinders with up to two cylindrical inclusions have been numerically
studied. Although a substantial number of numerical examples could
be generated with the accuracy of energy-conservation errors less than
10−6, we present in this paper the most fundamental results. Figure 5
illustrates the power reflection coefficient of the fundamental and the
first order space harmonics for the normal incidence of both TM and
TE wave with incident angle φ0 = 90◦ as a function of normalized
frequency h/λ0 in case of homogeneous host cylinder. In the figure,
TMRν and TERν denote the reflection coefficients of the ν-th space
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Figure 5. Power reflection coefficient of the lowest three
space harmonics versus non-dimensional frequency h/λ0 in case of
homogeneous host cylinder for both TM and TE waves, where a1 =
0.3h, ε1 = 1.5ε0, and φ0 = 90◦.

harmonic for TM wave and TE wave, respectively. R−1 (= R1) is
omitted here because of the symmetric profile with respect to the y
axis. Sharp resonances of both fundamental TM and TE wave have
been seen near the frequency h/λ0 = 0.96. This resonance profile
is closely viewed in Fig. 6(a) and has been compared with the case
of a composite cylinder with a coaxial dielectric inclusion shown in
Fig. 6(b), where perfect coincidence of resonance has been observed at
the same frequency for both TM and TE wave. We have obtained these
parameters of Fig. 6(b) as slightly changing the inclusion’s permittivity,
by using the fact that TM wave whose electric field component Ez is
parallel to the cylinders’ axes could be more sensitive to change of the
inclusion’s permittivity than TE wave. At the resonance frequency
h/λ0 = 0.9605 in Fig. 6(b) the dependence of reflection coefficient on
the incident angle has been examined and graphically plotted in Fig. 7.
It is very interesting to see a sharp directivity just around φ0 = 90◦
in Fig. 7(a), which is closely viewed in Fig. 7(b). The reflectance of
this periodic array has a very narrow directivity with respect to the
incident angle.

Figure 8(a) and 8(b) illustrate the power reflection coefficient of
one-layer composite periodic arrays with two inclusions per unit cell
versus normalized frequency h/λ0 for TM and TE wave, respectively,
where a1= a2= 0.16h, d1= d2= 0.24h, ε1 = ε2 = 2.0ε0, θ2 = θ1 +180◦,
a3 = 0.48h, ε3 = 1.5ε0, and φ0 = 90◦. The two inclusions which
have same size and permittivity are located symmetrically with respect
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(a) (b)

Figure 6. Comparison of power reflection coefficient of the funda-
mental space harmonics versus non-dimensional frequency h/λ0 for
both TM and TE waves without inclusion (a), where the parameters
are the same as in Fig. 5, with the case of coaxial dielectric inclusion
(b), where a1 = 0.027h, d1 = 0, ε1 = 3.75ε0, a2 = 0.3h, ε2 = 1.5ε0,
and φ0 = 90◦.

(a) (b)

Figure 7. Power reflection coefficient versus incident angle φ0 for both
TM and TE waves, where the geometric parameters are the same as in
Fig. 6(b) and the frequency h/λ0 = 0.9605. Fig. 7(a) is closely viewed
in Fig. 7(b).

to the center of the host cylinder, and rotate from the x-axis plane
(θ1 = 0◦) to the y-axis plane (θ1 = 90◦) as keeping the geometrical
symmetricity (θ2 = θ1 + 180◦). In this figure, solid lines show the
results for the case without inclusions. Dashed line, short dashed line
and dotted line show the results for the case of two inclusions with
θ1 = 0◦, θ1 = 45◦ and θ1 = 90◦, respectively. When the rotation
angle θ1 changes from θ1 = 0◦ to 90◦, in case of two inclusions
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(a) (b)

Figure 8. Power reflection coefficient of the fundamental space
harmonics versus non-dimensional frequency h/λ0 for one-layer
periodic arrays of composite cylinders with two inclusions, where
a1 = a2 = 0.16h, d1 = d2 = 0.24h, ε1 = ε2 = 2.0ε0, θ2 = θ1 + 180◦,
a3= 0.48h, ε3 = 1.5ε0, and φ0 = 90◦. (a) TM wave and (b) TE wave.

the resonance peak for TM wave shifts from h/λ0= 0.88 to lower
frequency h/λ0= 0.86, whereas those characteristics for TE wave shift
from h/λ0= 0.85 to higher frequency h/λ0= 0.88. The figures vividly
show that the resonance frequency of the composite periodic arrays
could be controllable by the slight change of the inclusions’ geometrical
parameters.

Using the same parameters for one-layer as in Fig. 8, frequency
response for one-hundred-layered square lattice composite periodic
arrays has been examined and graphically plotted in Fig. 9(a) and
Fig. 9(b) for TM and TE wave, respectively. In the figures, solid lines,
dashed lines and dotted lines indicate the power reflection coefficients
in case of two inclusions, whose rotation angles are θ1 = 0◦, θ1 = 45◦
and θ1 = 90◦, respectively. A perfect stopband has been observed from
h/λ0= 0.41 to 0.43 for both TM and TE waves. It is noticeable that
the stopband’s width is gradually narrowing while the inclusions are
rotating from θ1 = 0◦ to θ1 = 90◦, and the stopband’s width in case
of θ1 = 90◦ is nearly half of the case of θ1 = 0◦ for both TM and TE
waves.

Frequency response for one-hundred-layered periodic arrays of
composite cylinders with higher permittivities than in Fig. 9, has been
demonstrated in Fig. 10. The permittivities of inclusions and the
host cylinder are ε1 = ε2 = 2.5 ε0 and ε3 = 2.0 ε0, whereas other
geometrical parameters are the same. In this case, the stopband has
been observed in lower frequency region than in Fig. 9, and its width
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(a) (b)

Figure 9. Power reflection coefficient of the fundamental space
harmonics versus non-dimensional frequency h/λ0 for one-hundred-
layered square lattice periodic arrays of composite cylinders with two
inclusions, where a1 = a2 = 0.16h, d1 = d2 = 0.24h, ε1 = ε2 = 2.0ε0,
θ2 = θ1 + 180◦, a3 = 0.48h, ε3 = 1.5ε0, and φ0 = 90◦. (a) TM wave
and (b) TE wave.

(a) (b)

Figure 10. Power reflection coefficient of the fundamental space
harmonics versus non-dimensional frequency h/λ0 for one-hundred-
layered square lattice periodic arrays of composite cylinders with
two inclusions, where parameters are the same as in Fig. 9 except
ε1 = ε2 = 2.5ε0 and ε3 = 2.0ε0. (a) TM wave and (b) TE wave.

has also become narrower when the two inclusions rotate from θ1 = 0◦
to θ1 = 90◦. From Fig. 9 and Fig. 10, it follows that stopband’s
width and its frequency region for the multilayered periodic arrays with
composite cylinders could be controllable by adjusting the inclusions’
permittivities and geometrical parameters for both polarizations.
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6. CONCLUSION

We have presented a rigorous method for the electromagnetic
scattering from periodic arrays of two-dimensional composite circular
cylinders with internal cylindrical scatterers, using the lattice sums
technique and the T-matrix approach. The proposed method has been
used to analyze the reflection characteristics of plane waves from one-
layer or one-hundred-layered periodic arrays of the composite cylinders
with up to two internal scatterers. The effects of the presence of
internal scatterers on the behaviour of reflectance characteristics for
various configurations of periodic structures have been investigated. It
has been shown that the resonance properties and the stopband’s width
for both polarizations could be controllable by properly adjusting
the permittivities and the geometrical parameters of the internal
scatterers.
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