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Abstract—An efficient technique for the solution of large-scale
electromagnetic radiation and scattering problems arising from the
surface integral equations and the method of moments is developed.
The conventional MoM basis and testing functions are used to
discretize the integral equations resulting in a dense impedance matrix.
A block-partitioned wavelet transform is then employed to sparsify
the matrix. Full advantage is taken of the sparse nature of the
mathematical model to solve the system of equations by means of
the recently introduced Stabilized Bi-Conjugate Gradient method (Bi-
CGSTAB (l)). Various problems are considered involving perfect
electric conductor and dielectric material. Results are compared to
the corresponding results obtained via the direct solution, or LU
decomposition, of the original MoM dense matrix. Excellent results are
obtained in a very efficient manner. By block partitioning the MoM
impedance matrix as it is built and performing the wavelet transform
on the matrix blocks, analysis of very large electromagnetic problems
becomes possible in a very efficient and accurate manner.
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1. INTRODUCTION

Method of moments (MoM) is one of the most powerful numerical
techniques that is employed to analyze a large spectrum of
electromagnetic problems. Despite its effectiveness and popularity,
MoM has always suffered from the fact that the discritized
geometry under consideration results in a dense matrix that requires
a prohibitively expensive memory and CPU time for large-scale
scattering and radiation problems. Even when an iterative scheme is
applied to solve the dense system, the computational cost is normally
on an unacceptable order of O(pN2), where p is the number of
iterations and N is the size of the system [1]. Methods to reduce the
computational complexity associated with the MoM matrix include fast
multipole method (FMM) [2], impedance matrix localization method
[3], the adaptive integral method [4], and the wavelet bases method
[5–11] and recently, the adaptive basis function [12]. The wavelet
bases techniques may be applied either directly in which wavelets are
used as basis and testing functions, or indirectly which sparsifies the
impedance matrix via a wavelet matrix transform. In either case, the
O(pN2) computational cost of an iterative scheme can be dramatically
reduced and a sparse solver can be implemented to efficiently solve the
sparsified system of equations.

The wavelet transform approach employs two major bases namely
the Daubechies orthogonal wavelet (DOW) [13], and the nonorthogonal
cardinal spline wavelet (NCSW) [14]. Despite the fact that NCSW
generates a sparser impedance matrix, wavelet matrices have less
nonzero elements in DOW, which results in DOW to be the more
effective wavelet transform. Additionally, the NCSW transform makes
the condition number of the impedance matrix very large whereas the
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DOW transform does not affect the condition number. Consequently,
the DOW transform proves to be the best choice for sparsifying the
impedance matrix. In its conventional form, however, this transform
requires the storage of the full MoM matrix, which is not practical for
large EM radiation and scattering problems. However, if the block sub-
matrices wavelet transform method [15, 16] is used, the MoM matrix
can be partitioned and transformed to sparse sub-matrices, block by
block eliminating the need to generate and store the full MoM matrix.

There has been an extensive interest in constructing an efficient
iterative algorithm for the solution of the sparse system obtained
through the application of the wavelet transform. Recently, G. Sleijpe
and D. Fokkema have introduced a new Bi-conjugate Gradient
Stabilized method (Bi-CGSTAB) that combines GMRES (l) and
Bi-CG to profit from both techniques [17]. The new algorithm
is designed to deal with linear equations involving unsymmetric
matrices with complex spectrum. It is known that for a large class
of equations including systems obtained by discretizing advection
dominated PDE’s, the Bi-CGSTAB method stagnates and fails to
generate an accurate solution. This is shown to be due the fact
that for this type of PDE’s, the resulting matrix has almost pure
imaginary eigenvalues. The CG-like algorithms involve constructing
a so-called shadow residual vector of the form rk = qk(A)rk where qk

is a polynomial of degree k. In many cases, however, the CGS choice
of qk results in the amplification of the residual vector rk rather than
reducing it [17]. Bi-CGSTAB (l) overcomes this problem by forming
an l-degree minimal residual polynomials (MR-polynomials) pm after
each l-step. This new algorithm proves to be a robust technique when
dealing with large and sparse system of equations.

Here, we first use the conventional expansion and testing functions
to discretize the integral equations involved in the solution of various
electromagnetic problems. To prevent storing and transforming the
whole impedance matrix, which makes the analysis of large-scale
problems impossible, a simple block-partitioning scheme is employed
to store and transform smaller blocks of the full MoM matrix. Upon
performing the discrete wavelet transform (DWT), a generally high
level of sparsification is achieved, which enables us to implement the
Bi-CGSTAB (l) algorithm to solve the sparse system very efficiently.
In order to accelerate the convergence rate, we perform an incomplete
LU factorization (ILU) of the transformed impedance matrix where
the factorization is computationally inexpensive. It is also shown
that based on the complexity of the problems, an appropriate level
of threshold can be set to capture enough details needed from the
original system in order to obtain an accurate result when the wavelet
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transform is employed. Several problems are considered to demonstrate
the efficiency and applicability of the present method. Results are
compared with the corresponding results obtained from the direct
solution of the dense MoM system and excellent agreement is observed
in all examples.

2. FORMULATION

2.1. Discrete Wavelet Transform

When a commonly used local expansion and testing functions are used,
the resulting MoM system is expressed as

ZJ = E, (1)

where Z, J , and E denote the method of moment matrix, the induced
current vector, and the excitation vector, respectively. Note that Z
is normally a complex, non-Hermitian, dense matrix of size N × N .
If a wavelet matrix W is introduced, the matrix Equation (1) is then
transformed into

Z ′J ′ = E′ (2)

where

Z ′ = WZW T , J ′ = (W T )−1J, E′ = WE. (3)

Equation (2) then can be solved for J ′ and the direct solution is then
obtained as

J = W T J ′ (4)

Matrix W has to be chosen in such a way that Z ′ contains many
very small elements which can be set to zero due to a pre-selected
threshold without adversely affecting the accuracy of the solution
approximation. This can be achieved by constructing W from the
Daubechies orthogonal wavelet (DOW) [13]. The transformation starts
by defining the scaling and wavelet functions φ and ψ that satisfy the
following two-scale relations

φ(x) =
√

2
∑
n

hnφ(2x − n),

ψ(x) =
√

2
∑
n

gnφ(2x − n),
(5)
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where hn and gn denote decomposition filter coefficients. The
Daubechies wavelets with m vanishing moments have filters that are
each of length 2m + 2, which are related as

gk = (−1)kh2m+1−k, k = 0, · · · , 2m + 1 (6)

The filter coefficients for m = 1 are given as

[h0, h1, h2, h3] = [0.4830, 0.8365, 0.2241,−0.1294]
[g0, g1, g2, g3] = [−0.1294,−0.2241, 0.8365,−0.4830]

(7)

The l-level wavelet transform W can then be written as the product
of one-level wavelet transform Uk

W = Un−l+1 · · ·Un−1Un, and

Un−j =




[
Hn−j

Gn−j

]
IN−N/2j


 (8)

where Ik denotes the identity matrix and Hn−j and Gn−j are low
and high pass matrices of size N/2j+1 × N/2j defined by their filter
coefficients hk and gk. Using the above wavelet transform technique,
the sparse system of Equations (2) is obtained. This technique
however, requires the storage and consequently transformation of the
full MoM matrix, which is not feasible. In what follows, we describe
a simple yet effective block- partitioning scheme that overcomes this
problem.

2.2. Block-Partitioning Scheme

Conventionally, wavelet transform sparsifies the MoM matrix by
operating on the full size of the matrix. Yu and Kishk used the wavelet
transform to sparsify the dense MoM matrix around the boundaries
of the current components to avoid the discontinuities between the
current components [15, 16]. That made the wavelet transform matrix
to be partitioned to diagonally blocked sub-matrices. We found that
this form of the wavelet transform matrix does not need the full dense
MoM matrix. Therefore, we introduce the idea of block partitioning
the original MoM matrix during its generation by dividing and storing
the matrix in as many blocks around the current components or any
expected discontinuities as deem necessary. We then sparsify each
block and its corresponding excitation vector and finally combine only
the non-zero elements to solve for the unknown vector. To illustrate
the procedure, assume that the diagonally blocked wavelet transform
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matrix, the full dense MoM matrix, and the excitation vector are given
as

W =




W1 0 · · · 0
0 W2 · · · 0
...

... · · · ...
0 0 · · · WL




,

Z =




Z11 Z12 · · · Z1K

Z21 Z22 · · · Z2K

...
... · · · ...

ZK1 ZK2 · · · ZKK




, & E =




E1

E2

...
EK




(9)

where Wi is a multi-level transform matrix, which is constructed from
one-level transform matrix P i

n [19]:

Wi = P i
n−1+1 · · ·P i

n−1P
i
n (10)

P i
n−j =




[
H i

n−j

Gi
n−j

]
[0]

[0] INi−Ni/2j


 (11)

Wi expresses the decomposition equations. Wi can be expressed as
adaptive wavelet packet transform matrix, but the decomposition tree
of wavelet transform approaches the predefined decomposition tree
[18]. Wi(i = 1, 2, · · · , L) are orthogonal and could be the same as
one another for the matrices of the same size. Zij is a sub-matrix of
order Lj , and Ei is a sub-vector of length Li. The transformed matrix
Z ′, the transformed vector E′, and the unknown vector J ′ become

Z ′ =




W T
1 Z11W1 W T

1 Z12W2 · · · W T
1 Z1KWK

W T
2 Z21W1 W T

2 Z22W2 · · · W T
2 Z2KWK

...
... · · · ...

W T
KZK1W1 W T

KZK2W2 · · · W T
KZKKWK




,

E′ =




W T
1 E1

W T
2 E2

...

W T
KEK




& J ′ =




W T
1 J1

W T
2 J2

...

W T
KJK




, (12)



Progress In Electromagnetics Research, PIER 52, 2005 211

where Ji is a sub-vector of length Li. Notice that each block of the
transformed matrix Z ′ can be transformed independently, which makes
it possible to generate the matrix block by block and perform the
transformation and storage in the appropriate position in the sparse
matrix. After solving the sparse system, the original unknown current
coefficient can be obtained as J = W T J ′.

Note that unknown vector J is obtained from J ′ through inverse
wavelet transform after J ′ is obtained through the iterative solution.
We also note that if the blocks are partitioned into the same size, Wi

and Wj become the same identical transform matrices thus reducing
the computational effort even further by producing only a single
transform matrix W . The next natural step is to implement an efficient
iterative scheme that can accurately approximate the desired solution
with minimum computational complexity.

2.3. The Bi-CGSTAB (l) Algorithm

There are wide range of iterative solvers for the solution of large,
complex, sparse system of linear equations of the form Ax = b among
which the Conjugate Gradient (CG), the Bi-Conjugate Gradient (Bi-
CG), and the Quasi Minimal Residual (QMR) are the well known
methods. There are instances for which these techniques yield a slow
convergence rate and they might even diverge and fail to provide
approximate solutions. In the CG-like algorithms, for example, a
shadow residual vector rk = qk(A)rk, where qk is a polynomial of
degree k, is generated to minimize the residual vector rk. However,
for some practical problems, the choice of qk used in CGS results in
increasing the residual effect and hence divergence is encountered. To
overcome this problem, van der Vorst [19] introduced a new algorithm
called Bi-CGSTAB that takes for the qk the product of the 1-step
minimal residual (MR) polynomials. This degree 1 of polynomials,
takes the form 1 − wkt for some optimum wk. For many problems,
this choice of qk results in a faster and smoother convergence when
compared to CGS and Bi-CG methods. However, there are instances
for which wk becomes nearly zero, which causes stagnation or even
breakdown [17]. Gutknecht introduced a variant algorithm called
Bi-CGSTAB2 that attempts to avoid this stagnation by employing
a second degree of MR polynomials [20]. Despite its attractive
properties, this algorithm has the problem of producing degenerate
MR polynomials that results in the next second-degree polynomials
as well as the Bi-CG iteration coefficients to be polluted by large
errors that could affect the performance of the algorithm severely and
results in near breakdown. More recently, G. Sleijpe and D. Fokkema
presented a generalized algorithm, Bi-CGSTAB (l) that overcomes
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these shortcomings of Bi-CGSTAB and Bi-CGSTAB2. This method
proves to be the most reliable yet efficient technique to obtain an
approximate solution to a large, complex, sparse system. For l = 1, this
scheme becomes the Bi-CGSTAB algorithm. The polynomials qk are
selected to be the product of l-step MR-Polynomials of the following
form when k = ml + l

qk = qml+l = pmpm−1 · · · p0, (13)

where the pi’s are of degree l, pi(0) = 1, and pm minimizes
‖pm(A)qk−1(A)rk‖2. An l-degree MR-polynomial pm is formed after
each l-step. In the intermediate steps k = ml+i, i = 1, · · · , l−1 simple
factors ti are used to reconstruct the pm from these powers. In this
way, certain near-breakdowns can be avoided totally in these steps. It
is also worthwhile to mention that in exact algorithm if Gutknech’s Bi-
CGSTAB2 algorithm does not break down, it produces the same result
as Bi-CGSTAB (l) if l = 2. The complete Bi-CGSTAB (l) algorithm
may be found in [17] for interested readers.

2.4. Preconditioning Process

Often times, the sparse matrix Z ′ resulting from the wavelet
transformation of the original impedance matrix has a very large
condition number of even up to tens of thousands and would certainly
result in a very slow converging or diverging system. Therefore, the
incorporation of a preconditioning scheme is highly advised. Since Z ′

is a sparse matrix, the sparsity property needs to be explored when the
preconditioning is applied. Among different techniques available, one
of the most efficient and computationally inexpensive preconditioners
is the incomplete LU decomposition (ILU) [21]. If we denote the
nonzero structure of Z ′ by NZ(Z ′), i.e., the set of all pairs (i, j) such
that z′ij �= 0, then ILU is nothing but an (i, j, k) version of Gaussian
elimination, which is essentially restricted to the NZ(Z ′) part of the
matrix. With the ILU preconditioner, highly accurate results are
obtained very efficiently for a wide variety of problems.

3. NUMERICAL RESULTS

In order to illustrate the accuracy and efficiency of the present
technique, several numerical examples are discussed here. First,
we consider the problem of evaluating the surface electric current
distribution JS induced on a perfect electric conductor, PEC, sphere
with radius a = 2.5λ due to a θ-polarized plane wave incident in the
direction of θ = π. The conventional MoM basis and testing functions
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are used to discretize the Electric Field Integral Equation (EFIE) and a
dense impedance matrix of the size 256×256 is obtained. The wavelet
transform as discussed above is performed with a threshold of 10−4

resulting in a spars system with a sparsification rate of 73%. The
Bi-CGSTAB (l) is then used to solve the transformed system with l
ranging from 1 to 8. The number of iterations along with the 2-norm
of the residual vector is listed in Table 1.

Table 1. Results of the iterative solution of EFIE equation with
N = 256.

Order l Number of Iterations 
2kr  

7.9E-09 
4.8E-08 
7.7E-08 

5 and up 2 E-010 
2 
4
52 

4
3

Two equivalent surface current components are obtained. The
magnitudes of the current coefficients are computed and compared with
the corresponding results obtained through direct LU decomposition
of the original impedance matrix. Fig. 1 shows the magnitude of the
current coefficients versus the basis function order, which are arranged
to start from the direction of the plane wave incidence. The first half of
the curve represents the t-directed current coefficients and the second
half for the ϕ-directed current component. An excellent agreement
between both results is observed.

Next, the same problem is treated using the Magnetic Field
Integral Equation (MFIE) resulting in the same matrix size but
different structure. The sparsified system has a 70% sparsification
rate. Again, the iterative solver is employed to obtain an approximate
solution to the current density and results are seen in Table 2 and Fig. 2
in which the comparison is made with the direct solution. As seen
excellent agreement is observed. Although, the results in Fig. 1 and
Fig. 2 are for the same problem, we notice that the solution obtained
from the EFIE has some oscillation as compared to those obtained in
Fig. 2 from MFIE.

The next problem uses the MFIE to analyze the induced electric
current density on a PEC sphere but with a larger number of unknowns
which results in a dense matrix of size 1024 × 1024. The MoM
matrix is wavelet-transformed resulting in a 92% sparsification rate. As
expected, a much larger rate is obtained as the size of the problem space
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J t

Jϕ

Figure 1. A comparison of the magnitude of the electric current
coefficients evaluated by the direct LU decomposition and by the sparse
technique for a PEC sphere with a = 2.5λ using EFIE formulation.

|Jt|

|J |ϕ

Figure 2. A comparison of the magnitude of the electric current
coefficients evaluated by the direct LU decomposition and by the sparse
technique for a PEC sphere with a = 2.5λ using MFIE formulation.
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Table 2. Results of the iterative solution of MFIE equation with
N = 256.

Order l Number of Iterations 
2kr  

6.7E-010 
3.9E-011 
2.7E-07 

5 and up 2 E-012 
2 

2 
3

4

4
3

Table 3. Results of the iterative solution of MFIE equation with
N = 1024.

Order l Number of Iterations 
2kr  

1.7E-07 
9.0E-07 
3.5E-07 

5 and up E-08 

4 3 
2 3 

4

3 

6

is increased, which illustrates the effectiveness of the sparse system
analysis. Results of the sparse solver and direct method are seen in
Table 3 and Fig. 3. Excellent agreement with a dramatic saving in
both CPU and memory is achieved.

To illustrate the effectiveness of this procedure when dealing with
complex problems, we solve for the induced current density on a
truncated dielectric cone loaded with conducting strips as shown in
Fig. 4 with εr = 4.0, a1 = 0.11λ, a2 = 0.71771λ, h = 0.812λ,
the conducting strips with period p = λ/20, strip width w =
0.035λ, and w/p = 0.7. With the conventional discretization of the
integral equation, a matrix size of 512 × 512 is obtained. After the
sparsification process, an 18% sparsification rate is obtained. It is
clear that this rate is much lower than the previous problems. This
can be clearly explained by the fact that for a complex geometry,
more non-zero elements are needed to approximate the solution more
accurately. However, as the problem size becomes larger the wavelet
transformation naturally becomes more effective by producing more
zero elements. Results of the sparse system analysis and the direct
solution are given in Table 4 and Fig. 5. Excellent agreement is
observed. The sparse solver is capable of capturing even the small
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Figure 3. A comparison of the magnitude of the electric current
coefficients evaluated by the direct LU decomposition and by the sparse
technique for a PEC sphere with a = 2.5λ using MFIE formulation and
a discretization size of half of that used for Fig. 2 results.

Table 4. Results of the iterative solution of EFIE equation with
N = 512 for the complex geometry.

Order l Number of Iterations 
2kr  

1.0E-07 
6.0E-07 
2.4E-08 
6.8E-07 
8.3E-09 

7 & 8 8 E-09 

8 
9

15
23
242

3
4
5
6

details related to the current distribution. Note also the effect of
increasing the order of the Bi-CGSTAB (l) order, l.

In order to examine the efficiency and adequacy of our method for
larger problems, we consider the scattering from a PEC sphere with
radius a = 10λ. EFIE is discretized using Galerkin method and a dense
system of dimensions 2048 × 2048 is obtained. The wavelet transform
is employed resulting in a sparse system of only 137,951 unknowns
corresponding to a sparsification rate of 96.7%. The electric current
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   z 

h 

a2 

a1 

Figure 4. A Cross section of an axis-symmetric truncated dielectric
cone loaded with conducting strips.

distribution is evaluated by both the sparse method and the direct
LU decomposition technique and results are depicted in Fig. 6 where
nearly identical current values are obtained. We note that the sparse
solver uses the Bi-CGSTAB (2) which converges in 4 iterations.

We next consider a dielectric sphere with radius a = 5λ. A dense
matrix system of dimensions 2048 × 2048 is obtained. The induced
current coefficients are calculated by the Bi-CGSTAB (2) and the
direct method and results are shown in Fig. 7 where again excellent
agreement is observed. The sparse solver converges in 7 iterations with
a sparsification rate of 92.6%.

In the following, we consider a dual reflector antenna. The main
reflector is a parabolic reflector of 3 m diameter and focal to diameter
ratio of 0.41. The subreflector is shaped reflector of diameter 0.386 m
very close to the waveguide aperture as shown in Fig. 8. The frequency
of operation is 5.75 GHz. The resulting MoM matrix is 2048 × 2048.
The wavelet transform results in a 89% sparsification rate. The Bi-
CGSTAB (2) converges in 7 iterations and the results are compared
with the results obtained by the direct method and as it can be seen
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Figure 5. A comparison of the magnitude of the electric current
coefficients evaluated by the direct LU decomposition and by the
sparse technique for a truncated dielectric cone loaded with conducting
sphere.
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Figure 6. A comparison of the magnitude of the electric current
coefficients evaluated by the direct LU decomposition and by the sparse
technique for a PEC sphere with a = 10λ.
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Figure 7. A comparison of the magnitude of the electric current
coefficients evaluated by the direct LU decomposition and by the sparse
technique for a dielectric sphere with a = 2.5λ.

 

Figure 8. Generating curves for the parabolic reflector antenna with
sub-reflector.
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Figure 9. A comparison of the magnitude of the electric current
coefficients evaluated by the direct LU decomposition and by the sparse
technique for a dual reflector antenna.

Table 5. Results of the iterative solution of MFIE equation with
N = 1024 with the block-partitioning technique.

Order l Number of Iterations 
2kr  

5.4E-07 
3.4E-07 
1.2E-07 
6.8E-10 
7.6E-07 

7 & 8 3 E-09 

3 
2

4
5
6

11
6

5
5

4

in Fig. 9, identical results are obtained.
The final example serves the purpose of illustrating the

effectiveness of block-partitioning technique described in Section 2.2.
Again, MFIE is used to formulate the induced current density over a
PEC sphere where now instead of generating a 1024 × 1024 matrix,
four 512 × 512 sub-matrixes are generated separately and the wavelet
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|J t |

|J |ϕ

Figure 10. A comparison of the magnitude of the electric current
coefficients evaluated by the direct LU decomposition and by the sparse
technique.

transform in applied to each individual sub-matrix. After sparsification
is performed, the whole system of transformed sub-matrices along with
their corresponding excitation vector blocks are combined to solve for
the unknown vector. Clearly, we can now avoid storing the whole
MoM matrix at once hence saving in storage requirements of the MoM
technique. A 91.75% sparsification rate is obtained showing a slight
decrease in the population of non-zero entries as compared to example
3 where the whole MoM matrix was sparsified. Note that we chose
four blocks of equal dimensions for simplicity purposes. Again, the
current distribution is calculated using both the direct and the block-
partitioning sparse method and results are depicted in Table 5 and
Fig. 10. Excellent agreement is observed while a huge saving in CPU
time and memory requirements is achieved. Note that convergence is
obtained in only 7 iterations.

4. CONCLUSIONS

We presented a very efficient method for the solution of discretized
integral equations obtained when the Method of Moments is employed
to solve electromagnetic problems. Conventional expansion and testing
functions were used to discretize the problem geometry. A Daubechies
orthogonal wavelet transform was used to convert the dense impedance
matrix to a sparse matrix. Full advantage was then taken from the



222 Zunoubi and Kishk

sparse behavior of the system by implementing a preconditioned Bi-
CGSTAB (l) scheme that efficiently yields accurate solutions to the
problems. With the addition of block transformation method, large-
scale problems are effectively analyzed with minimal computation
effort and storage requirements. Our proposed technique is capable
of capturing very fine details associated with the electric current
distribution as compared to the direct solution.
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