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Abstract—This paper presents a new approach to estimate effective
constitutive parameters for a cell across an interface between two bi-
anisotropic media. The work is different from those studying effective
properties of bi-anisotropic mixtures in that the boundary conditions of
field components are taken into consideration. The degenerated cases,
including interfaces of two bi-isotropic, anisotropic and isotropic media,
are discussed respectively in detail. Simulation for anisotropic media
shows significant improvements can be expected from the adoption of
the new approach.
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1. INTRODUCTION

One important step in the process of analyzing an electromagnetic
band gap (EBG) structure using plane wave expansion (PWE) method
is to solve an operator eigen equation like one in [1]:

(
∇ + j�k

)
× 1
εr(�r )

(
∇ + j�k

)
×

∑
�G

�H �Ge
−j �G·�r =

ω2

c2

∑
�G

�H �Ge
−j �G·�r (1)

where �G are reciprocal lattice vectors and �k is a given wave vector.
An iterative eigen solver is attractive since the equivalent matrix of
Eq. (1) is a sparse one [1]. The solver will require a procedure where
a new vector (in the sense of linear algebra) is produced by operating
the operator onto an old vector. According to Eq. (1) , this procedure
will include the following steps: a given vector
(
[Hx, Hy, Hz] �G1

, [Hx, Hy, Hz] �G2
, [Hx, Hy, Hz] �G3

, . . . , [Hx, Hy, Hz] �GN

)T

is first modified by a curl operation, then three fast Fourier transforms
are performed to transform the xyz components of this vector into the
spatial domain. The resultant vector is further divided by medium pa-
rameters ε at respective spatial points, inverse fast-Fourier-transformed
to the spectral domain, modified by another curl operation and at last
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2a
2

1ε
ε

Figure 1. Spatial discretization: cells across an interface.
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output as a new vector. Since the calculation of �E(�r ) = �D(�r )/ε(�r )
is done only at discrete grid points, this procedure is only reasonable
for those grid points whose affiliated cell is filled with a homogeneous
medium. For cells running across an interface of different media, a
different profile of the interface is chosen which is different from the
original one (see Fig. 1) and thus errors will be introduced due to the
inaccurate representation of the interface profile. In order to reduce
these errors, an effective permittivity instead of the true one at a grid
point should be used.

2. NOTATIONS

(1) A tilde “∼” over a field component denotes the unique (i.e.,
effective) value of this non-continuous component accross the
interface within a cell.

(2) A superscript “ave” denotes the direct volume-averaging value of
a medium parameter over the cell:

Qave =
1

Vcell

∫
cell

Q(�r )dV =
2∑

i=1

Qi
Vi

Vcell
(2)

where V1 and V2 are the volumes of individual medium in a cell
and Vcell the volume of the cell. Note that Q can be any expression
of media parameters. It may be ε and ε−1. It may also be ε, ε−1,(

ε ξ

ζ µ

)
or

(
ε ξ

ζ µ

)−1

.

(3) Double over-bar denotes a dyadic. A dyadic can be expanded in
any orthonormal basis (�u1, �u2, �u3) as: A =

∑3
i=1

∑3
j=1 Aij�ui�uj . Its

matrix element Aij = �ui ·A·�uj depends on the chosen vector basis.
The relation between a dyadic and its characteristic matrix can
also be expressed in the form:

A = (�u1, �u2, �u3)1×3[A]3×3(�u1, �u2, �u3)T
3×1 (3)

[A]3×3 = (�u1, �u2, �u3)T
3×1 ·A1×1 · (�u1, �u2, �u3)1×3 (4)

(4) Superscript “EFF” denotes the indirect averaging value (i.e.,
an algebraic expression of other direct volume-averaging media
parameters) over the cell.

(5) Assume that the interface within a cell is a plane whose normal n̂
is given, the basis of the local coordinates system can be chosen as
the basis of the spherical coordinates system: n̂ = r̂, t̂ = θ̂, τ̂ = φ̂.
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(6) The transform matrix [T ] of two coordinates systems, the bases of
which are (t̂, τ̂ , n̂) and (x̂, ŷ, ẑ) respectively, is defined as:

(t̂ τ̂ n̂)1×3 = (x̂ ŷ ẑ)1×3[T ]3×3 with [T ]T [T ] = [T ]−1[T ] = [I]. (5)

3. EFFECTIVE MEDIA PARAMETERS FOR
ISOTROPIC MEDIA

For a cell filling with two different isotropic media, different
components of fields (normal or tangential) should be treated in
different ways. This results in the following well-known relations:{

D̃t,τ = εaveEt,τ

Ẽn =
(
ε−1

)ave
Dn

(6)

The dyadic form of Eq. (6) is

�D = ε
EFF · �E (7)

where �D = D̃tt̂+ D̃τ τ̂ +Dn̂, �E = Ett̂+ Eτ τ̂ + Ẽnn̂ and

ε
EFF = εave

(
I − n̂n̂

)
+

((
ε−1

)ave)−1
n̂n̂ (8)

where I = t̂t̂+ τ̂ τ̂ + n̂n̂ is a unit dyadic.

4. EFFECTIVE MEDIA PARAMETERS FOR COMPLEX
MEDIA, OLD APPROACH

A formula to compute the effective parameters for isotropic and
anisotropic media is suggested [1], following the same fashion as Eq. (8):

ε
EFF =

1
2

(
ε
ave ·

(
I − n̂n̂

)
+

(
I − n̂n̂

)
· εave

)
+

1
2

(((
ε
−1

)ave)−1
· n̂n̂+ n̂n̂ ·

((
ε
−1

)ave)−1
)
. (9)

For the most general bi-anisotropic media, a similar formula to
calculate the effective constitutive parameters over a cell is suggested
[3]:(

ε ξ

ζ µ

)EFF

=

(
ε ξ

ζ µ

)ave

·
(

I − n̂n̂ 0
0 I − n̂n̂

)

+





(

ε ξ

ζ µ

)−1



ave


−1

·
(
n̂n̂ 0
0 n̂n̂

)
. (10)
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If one examines Eq. (9) or (10) carefully, he will find out that they
are not as rigorous as Eq. (8). The weakness is caused by the dyadic
nature of the media parameters. In Eq. (8), the result of (I− n̂n̂) · �E is
the tangential component of �E and ε(I−n̂n̂)· �E results in the tangential
component of �D. In Eq. (9) or (10), however, the term ε

ave ·(I−n̂n̂) · �E
does not always yield the tangential component of �D. Although the
term (I − n̂n̂) · εave · �E in Eq. (9) represents the tangential component
of �D, it utilizes the whole �E instead of the tangential component of it.

The situation can be partly improved by starting the work in the
following way:


(
I − n̂n̂

)
· �D =

(
I − n̂n̂

)
· ε ·

(
I − n̂n̂

)
· �E

n̂n̂ · �D = n̂n̂ · ε · n̂n̂ · �E
(11)

Now tangential �D is related to tangential �E by (I − n̂n̂) · ε and
normal �D is related to normal �E by n̂n̂·ε. The resulted effective dyadic
permittivity will be:

ε
EFF =

[(
I − n̂n̂

)
· ε

]ave
·
(
I − n̂n̂

)
+

([
(n̂n̂ · ε)−1

]ave)−1
· n̂n̂. (12)

However, Eq. (11) is still not perfect since there are two other
possibilities: 


n̂n̂ · �D = n̂n̂ · ε ·

(
I − n̂n̂

)
· �E(

I − n̂n̂
)
· �D =

(
I − n̂n̂

)
· ε · n̂n̂ · �E

(13)

That is the tangential �E will induce normal �D and normal �E will
induce tangential �D. The former is simple since both normal �D and
tangential �E remain constant over the cell. The latter is rather difficult
to cope with since both normal �E and tangential �D are not constant
over the cell. Not to say how to integrate both Eq. (11) and (13)
together to produce a reasonable effective dyadic permittivity.

5. EFFECTIVE MEDIA PARAMETERS FOR COMPLEX
MEDIA, NEW APPROACH

Since the amount of continuous components is equal to that of non-
continuous components for either a �D �E pair or a �D �B �E �H quadriad,
the new approach starts by expressing the non-continuous components
in terms of continuous ones, doing averaging and then re-expressing
the flux density in terms of field strength or vice versa.
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5.1. General Procedure

For two bi-anisotropic media, the constitutive relations are:(
�D
�B

)
=

(
ε ξ

ζ µ

)
i

·
(

�E
�H

)
, i = 1, 2. (14)

In the tτn system, the matrix form of Eq. (14) is:(
(Dt Dτ Dn)T

(Bt Bτ Bn)T

)
=

(
[εT ] [ξT ]
[ζT ] [µT ]

)
i

(
(Et Eτ En)T

(Ht Hτ Hn)T

)
,

i = 1, 2 (15)

where 3 by 3 matrices [εT ]i, [ξT ]i, [ζT ]i and [µT ]i are defined as:

[QT ]i = [T ]T [Q]i[T ], Q = ε, ξ, ζ, µ.

Blocks [ε]i, [ξ]i, [ζ]i and [µ]i are coefficient matrices (in the xyz system)
of dyadic in Eq. (14). They are defined in the following way:

[Q]3×3 = (x̂ ŷ ẑ)T
3×1 ·Q1×1 · (x̂ ŷ ẑ)1×3 , Q = ε, ξ, ζ, µ

and they are coordinates-system dependent.
After exchanging Dn with En and Bn with Hn in Eq. (15) (see

Appendix A), one gets:(
(Dt Dτ En)T

(Bt Bτ Hn)T

)
=

(
[εT ′ ] [ξT ′ ]
[ζT ′ ] [µT ′ ]

)
i

(
(Et Eτ Dn)T

(Ht Hτ Bn)T

)
,

i = 1, 2 (16)

Now volume-averaging procedure can be applied to all the
elements of [εT ′ ]i, [ξT ′ ]i, [ζT ′ ]i and [µT ′ ]i in Eq. (16). Non-continuous
components Dt, Dτ , En, Bt Bτ and Hn in Eq. (16) can be evaluated
in the following way:(

(D̃t D̃τ Ẽn)T

(B̃t B̃τ H̃n)T

)
=

(
[εave

T ′ ] [ξave
T ′ ]

[ζave
T ′ ] [µave

T ′ ]

) (
(Et Eτ Dn)T

(Ht Hτ Bn)T

)
. (17)

Exchanging Ẽn with Dn and H̃n with Bn in Eq. (17) yields:(
(D̃t D̃τ Dn)T

(B̃t B̃τ Bn)T

)
=

(
[εEFF

T ] [ξEFF
T ]

[ζEFF
T ] [µEFF

T ]

) (
(Et Eτ Ẽn)T

(Ht Hτ H̃n)T

)
. (18)
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The matrix forms of effective constitutive parameters in the xyz system
can be obtained in the following way:[

QEFF
]

= [T ]
[
QEFF

T

]
[T ]T , Q = ε, ξ, ζ, µ. (19)

The respective dyadic forms can be obtained formally in the following
way:

Q
EFF

= (t̂ τ̂ n̂)
[
QEFF

T

]
(t̂ τ̂ n̂)T , Q = ε, ξ, ζ, µ. (20)

From the procedure above one can see that this new approach is as
rigorous as that in isotropic case (Eq. 8).

5.2. Effective Medium Parameters for Bi-Isotropic Media

For bi-isotropic medium, the constitutive relations are formulated as:(
�D
�B

)
=

(
ε ξ
ζ µ

)
i

(
�E
�H

)
, i = 1, 2 (21)

Blocks [εT ′ ]i, [ξT ′ ]i, [ζT ′ ]i and [µT ′ ]i in (16) can be easily derived as

(
[εT ′ ] [ξT ′ ]
[ζT ′ ] [µT ′ ]

)
i

=







ε 0 0
0 ε 0
0 0 −µ







ξ 0 0
0 ξ 0
0 0 −ξ







ζ 0 0
0 ζ 0
0 0 −ζ







µ 0 0
0 µ 0
0 0 ε







i

, i = 1, 2 (22)

where Qi = Qi/(εiµi − ξiζi), Q = ε, ξ, ζ, µ.
The effective medium parameters in tτn system, namely blocks

[εEFF
T ], [ξEFF

T ], [ζEFF
T ], and [µEFF

T ] in (18) are:

[
QEFF

T

]
=




Qave 0 0
0 Qave 0
0 0 QEFF

n


 , Q = ε, ξ, ζ, µ (23)

where QEFF
n = Q

ave
/(εaveµave − ξ

ave
ζ
ave), Q = ε, ξ, ζ, µ.

The respective dyadic forms can be written as:

Q
EFF

= Qave
(
t̂t̂+ τ̂ τ̂

)
+QEFF

n n̂n̂, Q = ε, ξ, ζ, µ. (24)

It is trivial to obtain Eq. (8) from (24) for the case where all the
media are isotropic.
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Figure 2. Local coordinates definition.

5.3. Effective Dyadic Permittivity for Anisotropic Media

For anisotropic media, only �D ∼ �E relation needs to be considered:

�D = εi · �E, i = 1, 2 (25)

To view the details of εEFF, let us take a 2-D interface as an example
(Fig. 2).

Let the cylinder be parallel to ẑ. Dyadic permittivities of two
media are:

εi = ε11,ix̂x̂+ ε12,ix̂ŷ + ε21,iŷx̂+ ε22,iŷŷ + ε33,iẑẑ, i = 1, 2,

and the unit vectors of the local coordinates system are


t̂ = −ẑ
τ̂ = − sinφx̂+ cosφŷ
n̂ = cosφx̂+ sinφŷ

.

Then [εT ]i (in tτn system) in (15 ) can be derived as:

[εT ]i =


 εT11 0 0

0 εT22 εT23

0 εT32 εT33




i

, i = 1, 2 (26)

where

εT11,i = ε33,i,

εT22,i = ε11,i sin2 φ+ ε22,i cos2 φ−(ε21,i + ε12,i) sinφ cosφ,

εT33,i = ε11,i cos2 φ+ ε22,i sin2 φ+ (ε21,i + ε12,i) sinφ cosφ,

εT23,i = −ε12,i sin2 φ+ ε21,i cos2 φ+ (ε22,i − ε11,i) sinφ cosφ,

εT32,i = ε12,i cos2 φ− ε21,i sin2 φ+ (ε22,i − ε11,i) sinφ cosφ.
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The matrix [εave
T ′ ] (in the tτn system) in (17) can be derived as:

[εave
T ′ ] =




εave
T ′11 0 0
0 εave

T ′22 εave
T ′23

0 εave
T ′32 εave

T ′33


 (27)

where

εave
T ′11 = (εT11)ave,

εave
T ′22 = (εT22 − εT23εT32/εT33)ave,

εave
T ′23 = (εT23/εT33)ave,

εave
T ′32 = −(εT32/εT33)ave,

εave
T ′33 = (1/εT33)ave.

The dyadic form ε
EFF in (20) can be derived as:

ε
EFF = ε

EFF
T11 t̂t̂+ ε

EFF
T22 τ̂ τ̂ + ε

EFF
T23 τ̂ n̂+ ε

EFF
T32 n̂τ̂ + ε

EFF
T33 n̂n̂ (28)

where

εEFF
T11 = εave

T ′11,

εEFF
T22 = εave

T ′22 − εave
T ′32ε

ave
T ′23/ε

ave
T ′33,

εEFF
T23 = εave

T ′23/ε
ave
T ′33,

εEFF
T32 = −εave

T ′32/ε
ave
T ′33,

εEFF
T33 = 1/εave

T ′33.

If one works on Eq. (9), the effective dyadic looks like this:

ε
EFF
ref = (εT11)

avet̂t̂+ (εT22)
aveτ̂ τ̂ + (· · ·)τ̂ n̂+ (· · ·)n̂τ̂ + (· · ·)n̂n̂. (29)

where εT11 and εT22 are defined in (26). The first term in (29) is
identical to εEFF

T11 in (28). The second term in (29) is different from
εEFF
T22 in (28) and permuting and averaging in Eq. (9) cannot change the

situation. They will become identical only when both ε12,i = ε21,i = 0
and ε11,i = ε22,i hold. In other words, Eq. (9) is valid only when
both permittivity dyadic are either isotropic or uni-axial. A similar
conclusion can be drawn for Eq. (10): it is valid only when all the four
dyadic ε, ξ, ζ and µ are either isotropic or uni-axial.

5.4. Numerical Example

The EBG structure is made of a triangular lattice of air cylinders
embedded in an anisotropic host. The lattice constant is a and the
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radius of the cylinders is r = 0.48a. The permittivity of the host is

ε/ε0 = 13 (x̂x̂+ ŷŷ + ẑẑ) + ε12jx̂ŷ − ε12jŷx̂. (30)

Eq. (1) is solved using two software packages, one is mpb [1], the
averaging scheme of which is Eq. (9) and the other is a component
in wpb [3], developed by the author, the averaging scheme of which
is Eq. (28). For a given ε12, each software outputs 128 eigen values
(16 k-points times 8 bands) and each eigen value is compared with
its counterpart and the maximum difference is recorded. The result is
presented in Table 1.

Table 1. Maximum difference of 128 pairs of eigen values from mpb
and wpb.

ε12 0.0 0.1 1.0 3.0 5.0 7.0 9.0 10.0 11.0

Maximum difference
of eigen values 0.98 0.98 0.98 0.98 6.10 6.23 12.07 16.42 11.37

from mpb and wpb(%)

From Table 1, one can see that when ε12 is small, the difference
of eigen values from two approaches is trivial. A difference of about
1% is due to the different implementation of the software packages.
For larger ε12, the difference become larger too. This trend agrees well
with the discussion in the previous section. It is obvious that the large
differences are caused by the defect in the old approach.

6. CONCLUSION

A general but rigorous procedure is proposed to calculate effective
medium parameters for cells running across an interface of two different
media. It is rigorous because all the field components and all the media
parameters are treated equally. No projection or permuting-averaging
operation is involved. It is general since it can be applied to interfaces
consisting of two media ranging from isotropic ones to bi-anisotropic
ones.

APPENDIX A.

The way to express non-continuous components in terms of continuous
ones is quite simple.
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Firstly turning Eq. (15) into six homogenous equations yields:{
−[I][D] + [0][B] + [εT ]i[E] + [ξT ]i[H] = [0]
[0][D] − [I][B] + [ζT ]i[E] + [µT ]i[H] = [0]

, i = 1, 2 (A1)

where [I] and [0] are 3 by 3 unit matrix and zero matrix respectivley.
Eq. (A1) can be also written in simple matrix form:

[A]i(Dt Dτ Dn Bt Bτ Bn Et Eτ En Ht Hτ Hn)T

= (0 0 0 0 0 0)T , i = 1, 2 (A2)

where [A]i is a 6 by 12 matrix.
Secondly, exchanging the position of variable Dn with En, Bn with

Hn yields a new coefficients matrix [A′]i which satisfies:

[A′]i(Dt Dτ En Bt Bτ Hn Et Eτ Dn Ht Hτ Bn)T

= (0 0 0 0 0 0)T , i = 1, 2 (A3)

Thirdly, by reforming the first 6 by 6 block in [A′]i to the same
form as the first 6 by 6 block in [A]i, variables Dt, Dτ , En, Bt, Bτ ,
and Hn in Eq. (A3). (A3) can be moved to the right hand side and
the resultant equations in block matrix form look like Eq. (16).
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