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Abstract—In this paper, analytical formulas have been derived for the
electromagnetic field generated by a horizontal electric dipole inside
high lossy half-space coated with a dielectric layer. This problem is
corresponding to the electromagnetic field generated by a horizontal
antenna in a submarine under an ice layer, or the measurement of the
conductivity of the oceanic lithosphere with a horizontal antenna as
the source, and a layer of sediment on the sea floor. These formulas
obtained for the electromagnetic field can be employed to calculated
the total field including the lateral-wave term and the trapped-surface-
wave term. Because the wave number of the trapped-surface-wave
term is different from that of the lateral-wave term, the interference
appears in the total field. Additionally, this paper has presented the
approximative formulas for a thin dielectric layer, which can be used
for the communication in low frequencies region.
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1. INTRODUCTION

The electromagnetic wave propagation along the surface of a dielectric-
layer coated high lossy half space is an interesting research topic
for various practical applications. For example, a dielectric layer
is frequently applied to superstrate to cover conducting strip in the
integrated microstrip circuits and printed antennas in the frequency
range of 1 GHz through 50 GHz, asphalt or cement to coat the ground
for VHF communications in the frequency range of 100 MHz through
1000 MHz, and a thick ice layer to coat sea water for communications
between two submarines in the frequency range of 30 kHz through
3 MHz at high-latitude regions.

From 1991 to 1994, King and Sandler [1–3] presented a set of
analytical formulas about electromagnetic fields generated by a vertical
or horizontal electric dipole over a conductor coated with a dielectric
layer. In 1998, Wait [4] commented the 1994 King’s paper and claimed
that the paper had overlooked a trapped-surface-wave term, which
varies as ρ−1/2 in the far region without detail description. The
debates between King and Wait rekindled the interest in the study
on the electromagnetic field generated by a vertical electric dipole
placed on a planar conductor covered with a dielectric layer coating
[6, 8]. In previous works by the authors, it has been found that the
electromagnetic field on the surface of the dielectric layer does include
both the trapped-surface-wave term and the lateral-wave term, and
the trapped-surface-wave varies as ρ−1/2 in the horizontal direction
and attenuates exponentially in the z direction. Later, further studies
have been investigated on the electromagnetic field generated by a
horizontal dipole over a dielectric-coated lossy material [9].
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In 1986, J. M. Dunn [12] had already discussed the electromagnetic
field generated by a horizontal dipole buried inside a high lossy material
coated with a dielectric layer, and the problem had been embodied in
King’s monograph [13].

In this paper, the author analyzes the problem same as Dunn’s
paper, and finds Dunn had overlooked the trapped surface wave. The
author has obtained the completed expressions of the electromagnetic
field generated by an unit horizontal electric dipole buried inside a
high lossy half-space coated with a dielectric layer. These expressions
contain both the trapped surface wave and the lateral wave. And these
formulas and computations can be applied to the communications in
lower frequencies region.

2. THE INTEGRATED FORMULAS OF THE
ELECTROMAGNETIC FIELD

The relevant geometry is illustrated in Fig. 1, where an unit horizontal
electric dipole in the x-direction is located at (0, 0,−d). Use is made
of the time dependence e−iωt, and comparing Fig. 1 in this paper
with the corresponding one in [1], exchanging k0 and k2 and taking

=−

=−

Figure 1. The poles and branches of the integrand in the λ complex
plane.
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z′ = −z, ϕ′ = −ϕ, the integrated formulas of the electromagnetic field
are obtained readily.

E2ρ(ρ, ϕ′, z′) = − ωµ0

4πk2
2

· cosϕ′[Fρ0(ρ, z
′ − d′) − Fρ0(ρ, z

′ + d′)

+Fρ1(ρ, z
′ + d′)] (1)

E2ϕ′(ρ, ϕ′, z′) =
ωµ0

4πk2
2

sinϕ′[Fϕ′
0
(ρ, z′ − d′) − Fϕ′

0
(ρ, z′ + d′)

+Fϕ′
1
(ρ, z′ + d′)] (2)

E2z′(ρ, ϕ′, z′) =
iωµ0

4πk2
2

cosϕ′[Fz′0
(ρ, z′ − d′) − Fz′0

(ρ, z′ + d′)

+Fz′1
(ρ, z′ + d′)] (3)

B2ρ(ρ, ϕ′, z′) = −µ0

4π
sinϕ′[Gρ0(ρ, z

′ − d′) −Gρ0(ρ, z
′ + d′)

+Gρ1(ρ, z
′ + d′)] (4)

B2ϕ′(ρ, ϕ′, z′) = −µ0

4π
cosϕ′[Gϕ′

0
(ρ, z′ − d′) −Gϕ′

0
(ρ, z′ + d′)

+Gϕ′
1
(ρ, z′ + d′)] (5)

B2z′(ρ, ϕ′, z′) =
iµ0

4π
sinϕ′[Gz′0

(ρ, z′ − d′) −Gz′0
(ρ, z′ + d′)

+Gz′1
(ρ, z′ + d′)] (6)

The first and the second terms in (1) through (6) can be expressed
as follows;

Fρ0(ρ, z
′±d′) = −eik2r

[
2k2

r2
+

2i
r3

+
(
z′ ± d′

r

)2( ik2
2

r
− 3k2

r2
− 3i
r3

)]
(7)

Fϕ′
0
(ρ, z′±d′) = −eik2r

(
ik2

2

r
− k2

r2
− i

r3

)
(8)

Fz′0
(ρ, z′±d′) = −eik2r

(
ρ

r

)(
z′ ± d′

r

)(
k2

2

r
+

3ik2

r2
− 3

r3

)
(9)

Gρ0(ρ, z
′±d′)

Gϕ′
0
(ρ, z′±d′)

= −eik2r
(
z′ ± d′

r

)(
ik2

r
− 1

r2

)
(10)

Gz′0
(ρ, z′±d′) = −eik2r

(
ρ

r

)(
k2

r
+

i

r2

)
(11)

In the above formulas, when using “−”, r = r1 =
√
ρ2 + (z′ − d′)2,

and when using “+”, r = r2 =
√
ρ2 + (z′ + d′)2. Here, r1 is the path

length of the direct wave, r2 is the path length of the reflected wave. At
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large distances between the source and the observation point, because
of the high attenuation, both the direct and the reflected waves in
region 2 are negligible.

The third terms in (1) and (2) can be expressed as

Fρ1(ρ, z
′ + d′) = Fρ2(ρ, z

′ + d′) + Fρ3(ρ, z
′ + d′) (12)

Fϕ′
1
(ρ, z′ + d′) = Fϕ′

2
(ρ, z′ + d′) + Fϕ′

3
(ρ, z′ + d′) (13)

where

Fρ2(ρ, z
′+d′)

Fϕ′
2
(ρ, z′+d′)

=
1
2

∞∫
0

γ2(Q3+1)[J0(λρ)∓J2(λρ)]eiγ2(z′+d′) · λdλ (14)

Fρ3(ρ, z
′+d′)

Fϕ′
3
(ρ, z′+d′)

= −k2
2

2

∞∫
0

γ−1
2 (P3−1)[J0(λρ)±J2(λρ)]eiγ2(z′+d′) ·λdλ (15)

The third term in (3) can be expressed as

Fz′1
(ρ, z′ + d′) =

∞∫
0

(Q3 + 1)J1(λρ)eiγ2(z′+d′) · λ2dλ (16)

Similarly,

Gρ1(ρ, z
′ + d′) = Gρ2(ρ, z

′ + d′) + Gρ3(ρ, z
′ + d′) (17)

Gϕ′
1
(ρ, z′ + d′) = Gϕ′

2
(ρ, z′ + d′) + Gϕ′

3
(ρ, z′ + d′) (18)

where

Gρ2(ρ, z
′ + d′)

Gϕ′
2
(ρ, z′ + d′) =

1
2

∞∫
0

(Q3 + 1)[J0(λρ) ± J2(λρ)]eiγ2(z′+d′) · λdλ (19)

Gρ3(ρ, z
′ + d′)

Gϕ′
3
(ρ, z′ + d′) = −1

2

∞∫
0

(P3 − 1)[J0(λρ) ∓ J2(λρ)]eiγ2(z′+d′) · λdλ (20)

Gz′1
(ρ, z′ + d′) = −

∞∫
0

(P3 − 1)γ−1
2 J1(λρ)eiγ2(z′+d′) · λ2dλ (21)

where Q3 and P3 are the reflected coefficients of the electric-type wave
and the magnetic-type wave, respectively. They are
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γ2

2
(Q3 + 1) =

k2
2γ2

k2
1

(
k2

1γ0

k2
0

− iγ1 tan γ1l

)

γ2 +
k2

2γ0

k2
0

− i

(
k2

2γ1

k2
1

+
k2

1γ0γ2

k2
0γ1

)
tan γ1l

(22)

k2
2

2γ2
(P3 − 1) = −

k2
2

(
γ1

γ0
− i tan γ1l

)

γ1 +
γ1γ2

γ0
− i

(
γ2 +

γ2
1

γ0

)
tan γ1l

(23)

where
γm =

√
k2

m − λ2, m = 0, 1, 2 (24)

In the next step, it is necessary to evaluate the above Sommerfeld
integrals.

3. EVALUATION FOR THE ELECTRIC-TYPE TERMS
OF THE ELECTROMAGNETIC FIELD

The terms in (14), (16) and (19) including the factor (Q3+1), which
depends on the coefficient of the electric-type wave, are defined
by the electric-type terms. Similarly, the terms in (15), (20) and
(21) including the factor (P3-1), which depends on the coefficient
of the magnetic-type wave, are defined by the magnetic-type terms.
Substituting (22) into (14), the following expressions are obtained
readily.

Fρ2(ρ, z
′ + d′)

Fϕ2(ρ, z′ + d′)
=

∞∫
0

(
γ0

k2
0

− i
γ1

k2
1

tan γ1l

)
γ2

γ2

k2
2

+
γ0

k2
0

− i

(
γ1

k2
1

+
k2

1γ0γ2

k2
0k

2
2γ1

)
tan γ1l

·eiγ2(z′+d′) [J0(λρ) ∓ J2(λρ)]λdλ (25)

Taking into account the following relations

Jn(λρ) =
1
2

[
H(1)

n (λρ) + H(2)
n (λρ)

]
(26)

H(1)
n (−λρ) = (−1)n+1H(2)

n (λρ) (27)
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(25) can be re-written as

Fρ2(ρ, z
′ + d′)

Fϕ′
2
(ρ, z′ + d′)

=
1
2

∞∫
−∞

(
γ0

k2
0

− i
γ1

k2
1

tan γ1l

)
γ2

q(λ)

·eiγ2(z′+d′)
[
H

(1)
0 (λρ) ∓H

(1)
2 (λρ)

]
λdλ (28)

where

q(λ) =
γ2

k2
2

+
γ0

k2
0

− i

(
γ1

k2
1

+
k2

1γ0γ2

k2
0k

2
2γ1

)
tan γ1l (29)

In order to evaluate the Sommerfeld integrals, the poles of the
integrand should be considered. The integrand of (28) has the poles λj

to satisfy the equation q(λ) = 0. When k2 is much larger than k1 and
k0, using the limit of k2 → ∞ , we can convert the equation q(λ) = 0
to

q∗(λ) =
γ0

k2
0

− i
γ1

k2
1

tan γ1l = 0 (30)

Equation (30) has been discussed in [6], when the thickness l of
the dielectric layer satisfy (n − 1)π <

√
k2

1 − k2
0l < nπ, equation (30)

has n roots on the up-half space of the plane of λ. If k2 �= ∞ , and is
much larger than k1 and k0, Following the manner addressed in [6, 8],
under the same condition, (29) still has n roots and may be solved by
Newton method numerically.

In addition, the integrand has two branch points at λ = k0 and
λ = k2, the branch cuts and the poles are taken on the λ complex
plane as shown in Fig. 2.

On both sides of the branch cut Γ0, the phase of Γ0 will change
to 180◦, but Γ2 remains the same value, and vice versa for the branch
cut Γ2. Under these conditions, (28) may be re-written as

Fρ2(ρ, z
′ + d′)

Fϕ2(ρ, z
′ + d′) = πi

∑
j

γ∗2

(
γ∗0
k2

0

− iγ∗1
k2

1

tan γ∗1 l
)

q′(λj)

·eiγ∗
2 (z′+d′)λj

[
H

(1)
0 (λjρ) ∓H

(1)
2 (λjρ)

]

+
1
2

∫
Γ0+Γ2

γ2

(
γ0

k2
0

− iγ1

k2
1

tan γ1l

)
q(λ)

·eiγ2(z′+d′)λ
[
H

(1)
0 (λρ) ∓H

(1)
2 (λρ)

]
dλ (31)
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Figure 2. The poles and branches of the integrand in the λ complex
plane.

where

q′(λj) = − λj

k2
2γ

∗
2

− λj

k2
0γ

∗
0

− i tan γ∗1 l

·
[
− λj

k2
1γ

∗
1

k2
1

k2
0k

2
2

(
−λjγ

∗
2

γ∗1γ
∗
0

− λjγ
∗
0

γ∗1γ
∗
2

+
γ∗0γ

∗
2λj

γ∗
3

1

)]

+ i sec2 γ∗1 l ·
(
γ∗1
k2

1

+
k2

1γ
∗
0γ

∗
2

k2
0k

2
2γ

∗
1

)
λjl

γ∗1
(32)

γ∗m =
√
k2

m − λ2
j m = 0, 1, 2 (33)

The first term in (31) is the sum of residues at the poles, if the
thickness l of the dielectric layer satisfy (n − 1)π <

√
k2

1 − k2
0l < nπ,

the integrand should have n poles. On both sides of the branch cut
Γ0, let

λ = k0(1 + iτ2) (34)

thus,

H(1)
n (λρ) ≈

√
2

πk0ρ
exp

[
i

(
k0ρ−

nπ

2
− π

4

)
− k0ρτ

2
]

(35)

If k0ρ 	 1, it may be seen that the dominant contribution of the
integral along Γ0 comes from the neighborhood of k0, and following
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approximation may be taken

γ0 =
√
k2

0 − λ2 ≈ k0e
i 3π

4

√
2 · τ (36)

γ1 =
√
k2

1 − λ2 ≈ γ′1 =
√
k2

1 − k2
0 (37)

γ2 =
√
k2

2 − λ2 ≈ γ′2 =
√
k2

2 − k2
0 (38)

Substituting (36)–(38) into the integral (31) along the branch cut
Γ0, following expressions may be obtained

1
2

∫
Γ0

γ2

(
γ0

k2
0

− i
γ1

k2
1

tan γ1l

)
q(λ)

· eiγ2(z′+d′)
[
H

(1)
0 (λρ) ∓H

(1)
(2) (λρ)

]
· λ · dλ

= 2k2
0

√
2

πk0ρ
exp

[
ik0ρ + iγ′2(z

′ + d′) + i
π

4

]
· γ′2

1 − i
k2

1γ2
′

k2
2γ1

′ tan γ1
′l

·(−A + ei π
4 ∆)

(√
π

k0ρ
+ πi

√
2∆e−iP ∗

F (P ∗)
) {

1
− i

k0ρ

}
(39)

where

∆ =

k0γ
′
2

k2
2

− i
k0γ

′
1

k2
1

tan γ′1l

√
2

(
1 − i

k2
1γ

′
2

k2
2γ

′
1

tan γ′1l

) (40)

A = e−i π
4
k0γ

′
1√

2k2
1

tan γ′1l (41)

P ∗ = k0ρ∆2 (42)

F (P ∗) =
1
2
(1 + i) +

P ∗∫
0

eit

√
2πt

dt (43)

F (P ∗) is Fresnel integral.
Since Region 2 is a high lossy medium, so the integral along the

branch cut Γ2 can be neglected. Therefore, (31) may be simplified as

Fρ2(ρ, z
′ + d′)

Fϕ′
2
(ρ, z′ + d′) = πi

∑
j

γ∗2

(
γ∗0
k2

0

− iγ∗1
k2

1

tan γ∗1 l
)

q′(λj)
eiγ∗

2 (z′+d′)λj
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·
[
H

(1)
0 (λjρ) ∓H

(1)
2 (λjρ)

]
− 2k2

0(A− ei π
4 ∆)γ′2

1 − i
k2

1γ
′
2

k2
2γ

′
1

tan γ′1l

·
√

2
πk0ρ

exp
[
ik0ρ + iγ′2(z

′ + d′) + i
π

4

] {
1

− i
k0ρ

}

·
[√

π

k0ρ
+

√
2 · π · i · ∆ · e−iP ∗

F (P ∗)
]

(44)

Apparently, in (44), the first term is the trapped-surface-wave
term, and the second one is the lateral-wave term. Similarly, Fz′1

(ρ, z′+
d′) and Gρ2(ρ, z

′ + d′) may be re-written as

Fz′1
(ρ, z′ + d′) =

∞∫
0

(Q3 + 1)J1(λρ)eiγ2(z′+d′) · λ2 · dλ

= 2πi
∑
j

γ∗0
k2

0

− iγ∗1
k2

1

tan γ∗1 l

q′(λj)
eiγ∗

2 (z′+d′)λ2
jH

(1)
1 (λjρ)

+
2k3

0

(
A− e

i π

4∆
)

1−i
k2

1γ
′
2

k2
2γ

′
1

tan γ′1l

· exp
[
ik0ρ + iγ′2(z

′+d′) + i
π

4

]

·
√

2
πk0ρ

[√
π

k0ρ
+

√
2iπ · ∆ · e−iP ∗

F (P ∗)
]

(45)

Gρ2(ρ, z
′ + d′)

Gϕ′
2
(ρ, z′ + d′) = iπ

∑
j

γ∗0
k2

0

− iγ∗1
k2

1

tan γ∗1 l

q′(λj)

[
H

(1)
0 (λjρ) ±H

(1)
2 (λjρ)

]

·eiγ∗
2 (z′+d′)λj −

2k2
0(A− ei π

4 ∆)

1 − i
k2

1γ
′
2

k2
2γ

′
1

tan γ′1l

√
2

πk0ρ

· exp
[
ik0ρ + iγ′2(z

′ + d′) + i
π

4

] {
− i

k0ρ

1

}

·
[√

π

k0ρ
+

√
2iπ · ∆ · e−iP ∗

F (P ∗)
]

(46)
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4. EVALUATION OF THE TERMS FOR THE
MAGNETIC-TYPE WAVE

Substituting (23) into (15), the following expressions may be obtained

Fρ3(ρ, z
′ + d′)

Fϕ′
3
(ρ, z′ + d′)

=
∞∫
0

k2
2

(
γ1

γ0
− i tan γ1l

)
γ2p(λ)

eiγ2(z′+d′)[J0(λρ) ± J2(λρ)]λdλ

(47)
where

p(λ) =
γ1

γ0
+

γ1

γ2
− i

(
1 +

γ2
1

γ0γ2

)
tan γ1l (48)

The electromagnetic field due to a horizontal electric dipole over
a lossless half-space coated with a dielectric layer have been addressed
in [9]. When k2 → ∞, (48) has been simplified as (27) as shown in
[9]. It has been pointed out that when the thickness l of the dielectric
layer satisfies the condition (n− 1

2)π ≤
√
k2

1 − k2
0l ≤ (n+ 1

2)π, equation
p(λ) = 0 has n roots. If k2 �= ∞ and k2 is much larger than k0 and k1,
equation p(λ) = 0 still has n roots, and the roots λj(j = 1, 2.....n) can
be solved numerically by Newton method.

Therefore, (47) can be re-written as

Fρ3(ρ, z
′ + d′)

Fϕ′
3
(ρ, z′ + d′) = πi

∑
j

k2
2

(
γ∗1
γ∗0

− i tan γ∗1 l
)

γ∗2p
′(λj)

eiγ∗
2 (z′+d′)λj

·
[
H

(1)
0 (λjρ) ±H

(1)
2 (λjρ)

]

+
1
2

∫
Γ0

k2
2

(
γ1

γ0
− i tan γ1l

)
γ2p(λ)

eiγ2(z′+d′)

·
[
H

(1)
0 (λρ) ±H

(1)
2 (λρ)

]
λdλ (49)

where

p′(λ) = λγ1

(
1
γ3

0

+
1
γ3

2

)
− λ

γ1

(
1
γ0

+
1
γ2

)
− i

λ tan γ1l

γ0γ2

(
γ2

1

γ2
2

+
γ2

1

γ2
0

− 2

)

+i
λl

γ1
sec2 γ1l

(
1 +

γ2
1

γ0γ2

)
(50)
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Since the dominant contribution of the integral along the branch
cut Γ0 comes from the neighborhood of k0, the second term in (49)
may be simplified as

1
2

∫
Γ0

k2
2

(
γ1

γ0
− i tan γ1l

)
γ2p(λ)

eiγ2(z′+d′)
[
H

(1)
0 (λρ) ±H

(1)
2 (λρ)

]
λdλ

=
2k2

0k
2
2 tan γ′1l

γ′2

(
γ′1
γ′2

− i tan γ′1l
) ·

√
2

πk0ρ
exp

[
ik0ρ + iγ′2(z

′ + d′) − i
π

4

]

·
{
− i

k0ρ

1

}
·
(
B + e

i π

4 · ∆′
)
·
[√

π

k0ρ
+ i

√
2π∆′e−iP2F (P2)

]
(51)

where

∆′ =
γ′1 − i

γ
′2
1

γ′2
tan γ′1l

√
2k0

(
γ′1
γ′2

− i tan γ′1l
) (52)

B = e−i π
4

γ′1
k0

√
2 tan γ′1l

(53)

P2 = k0ρ∆′2 (54)

thus,

Fρ3(ρ, z
′ + d′)

Fϕ′
3
(ρ, z′ + d′) = πi

∑
j

k2
2

(
γ∗1
γ∗0

− i tan γ∗1 l
)

γ∗2p
′(λj)

eiγ∗
2 (z′+d′)λj

·
[
H

(1)
0 (λjρ) ±H

(1)
2 (λjρ)

]

+
2k2

0k
2
2 tan γ′1l(B + ei π

4 ∆′)

γ′2

(
γ′1
γ′2

− i tan γ′1l
) eik0ρ+iγ′

2(z′+d′)−i π
4

√
2

πk0ρ

·
{
− i

k0ρ

1

} [√
π

k0ρ
+ i

√
2π∆′e−iP2F (P2)

]
(55)
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Similarly,

Gρ3(ρ, z
′ + d′)

Gϕ′
3
(ρ, z′ + d′) = πi

∑
j

γ∗1
γ∗0

− i tan γ∗1 l

p′(λj)
eiγ∗

2 (z′+d′)λj

·
[
H

(1)
0 (λjρ) ∓H

(1)
2 (λjρ)

]

+
2k2

0 tan γ′1l(B + ei π
4 ∆′)(

γ′1
γ′2

− i tan γ′1l
)

√
2

πk0ρ
eik0ρ+iγ′

2(z′+d′)−i π
4

·
{

1
− i

k0ρ

} [√
π

k0ρ
+ i

√
2π∆′e−iP2F (P2)

]
(56)

and

Gz′1
(ρ, z′+d′) = πi

∑
j

γ∗1
γ∗0

− i tan γ∗1 l

γ∗2p
′(λj)

eiγ∗
2 (z′+d′)λ2

jH
(1)
1 (λjρ)

− 2k3
0 tan γ′1l(B + ei π

4 ∆′)

γ′2

(
γ′1
γ′2

− i tan γ′1l
) ·

√
2

πk0ρ
eik0ρ+iγ′

2(z′+d′)−i π
4

·
[√

π

k0ρ
+ i

√
2π∆′e−iP2F (P2)

]
(57)

5. APPROXIMATION OF THE ELECTROMAGNETIC
FIELD FOR THIN DIELECTRIC LAYER

Taking into account that two submarines are buried inside in the sea
water covered with a layer of ice, and they communicate the message
with the horizontal antenna each other. The relevant geometry of
this problem is illustrated in Fig. 3. In this problem, the complex
dielectric constants of there three kinds of medium satisfy the condition
of

∣∣k2
0

∣∣ � ∣∣k2
1

∣∣ � ∣∣k2
2

∣∣ and the thickness l of the dielectric layer satisfies
the relation

∣∣k2
1l

2
∣∣ � 1, the equation q(λ) = 0 has only one root λ1,

and equation p(λ) = 0 has no root. In this case, (40) and (41) may be
simplified as

∆ ≈

k0

k2
− ik0l
√

2
� 1 (58)
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Figure 3. The geometry for two submarines are buried inside in the
sea water covered with a layer of ice.

A ≈ e−i π
4 k0l√
2

� 1 (59)

(52) and (53) may be approximated as

∆′ ≈ k2√
2k0(1 − ik2l)

	 1 (60)

B ≈ e−i π
4√

2k0l
	 1 (61)

So that the terms of the electric-type wave may be expressed as

Fρ2(ρ, z
′ + d′)

Fϕ′
2
(ρ, z′ + d′) = πi

(
γ∗0
k2

0

− i
γ∗

2

1 l

k2
1

)
γ∗2

q′(λ1)
eiγ∗

2 (z′+d′)λ1

·
[
H

(1)
0 (λ1ρ) ∓H

(1)
2 (λ1ρ)

]

+ 2k3
0

√
1

πk0ρ
eik0ρ+ik2(z′+d′)+i π

2

{
1

− i
k0ρ

}

·
[√

π

k0ρ
+ πi

(
k0

k2
− ik0l

)
e−iP ∗

F (P ∗)
]

(62)
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Fz′1
(ρ, z′ + d′) = 2πi ·

γ∗0
k2

0

− i
γ∗21 l

k2
1

q′(λ1)
H

(1)
1 (λ1ρ)λ2

1e
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− 2
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1
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·
[√

π

k0ρ
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(
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− ik0l)e−iP ∗

F (P ∗
)]

(63)

Gρ2(ρ, z
′ + d′)

Gϕ′
2
(ρ, z′ + d′) = πi

γ∗0
k2

0

− i
γ∗1 l

k2
1
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2 (z′+d′)λ1

·
[
H

(1)
0 (λ1ρ) ±H

(1)
2 (λ1ρ)

]

+ 2
k3

0

k2

√
1

πk0ρ
eik0ρ+ik′
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2

{
− i

k0ρ
1

}

·
[√

π

k0ρ
+ πi(

k0

k2
− ik0l)e−iP ∗

F (P ∗)
]

(64)

Since P2 = k0ρ∆′2 	 1, the function erfc(
√
x) may be approxi-

mated as

erfc(
√
x) =

1
π
e−x ·

3∑
k=0

(−1)kΓ
(
k +

1
2

)
xk+1/2

+ Rn (65)

The lateral wave term of (55) may be simplified as

[√
π

k0ρ
+ πi

√
2 · ∆′ · e−iP 2

F (P2)
]

≈
√

π

k0ρ

[
−ik2

0

k2
2

(1 − ik2l)2

k0ρ
+

3k4
0

k4
2

(1 − ik2l)4

(k0ρ)2
+ · · ·

]
(66)

thus,

Fρ3(ρ, z
′ + d′)

Fϕ′
3
(ρ, z′ + d′) =

2k4
0

k1

1
k0ρ

eik0ρ+ik2(z′+d′)−i π
2 ·

{
− i

k0ρ
1

}

·
[

1
k0ρ

+
3i(1 − ik2l)2

k2
2ρ

2

]
(67)

Gρ3(ρ, z
′ + d′)

Gϕ′
3
(ρ, z′ + d′) =

2k4
0

k1k2

1
k0ρ

eik0ρ+ik2(z′+d′)−i π
2 ·

{
1

− i
k0ρ

}
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·
[

1
k0ρ

+
3i(1 − ik2l)2

k2
2ρ

2

]
(68)

Gz′1
(ρ, z′ + d′) = − 2k5

0

k1k2
2

1
k0ρ

eik0ρ+ik2(z′+d′)−i π
2

·
[

1
k0ρ

+
3i(1 − ik2l)2

k2
2ρ

2

]
(69)

Substituting (62)–(64) and (67)–(69) into (1)–(6), neglecting
the direct wave and the reflected wave in the conductor, the final
expressions of the electromagnetic field for the thin dielectric layer
are

E2ρ(ρ, ϕ′, z′) = − ωµ0

4πk2
2

cosϕ′
{
πi

(
γ∗0
k2

0

− i
γ∗21 l
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1
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·
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·e−iP ∗
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(72)
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B2z′(ρ, ϕ′, z′) =
iµ0

4π
sinϕ′ 2k3

0

k1k2
2ρ

2
eik0ρ+ik2(z′+d′)e−i π

2 (75)

6. CALCULATIONS AND DISCUSSIONS

Taking into account that a horizontal antenna of a submarine is
buried inside in the sea water covered with a layer of ice, with
the operating frequency f=1MHz, the conductivity and the relative
dielectric constant of ice being approximately σ1 = 1 × 10−5 S/m and
ε1r = 3.2, respectively, and the conductivity and the relative dielectric
constant of sea water being σ2 ≈ 4 S/m, ε2r = 80, respectively, the
wave number of the electric-type trapped surface wave λ1 varies as a
function of the thickness l of ice layer. The real part and the imaginary
part of λ1/k0 are shown in Figs. 4 and 5, respectively. In contrast, when
Region 2 is a perfect conductor, the corresponding real part and the
imaginary part of λ1/k0 are also plotted in the same figures. From the
Figs. 4 and 5, it is seen that the real part for perfect conductor is closed
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Figure 4. The real parts of λ1/k0 for electric-type trapped surface
wave vary with thickness l of ice layer.

Figure 5. The imaginary parts of λ1/k0 for electric-type trapped
surface wave vary with thickness l of ice layer.
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Figure 6. The real parts of λ1/k0 for magnetic-type trapped surface
wave vary with thickness l of ice layer.

to that for the high lossy material, but the imaginary parts of λ1/k0

for both substrates have a little difference. The trapped surface wave
for Region 2 being high lossy material attenuates faster than that for
Region 2 being perfect conductor. Similarly, the real and imaginary
parts of the wave number for the magnetic-type trapped surface wave
as a function of the thickness l are shown in Figs. 6 and 7, respectively.

If the transmitting and receiving antennas are located at d′ = z′ =
0.5 m underneath the ice layer, Figs. 8 and 9 show the amplitude of the
component E2ρ at ϕ′ = 0◦ as a function of the propagation distances
with the thicknesses of the ice layer l = 2 m and 8 m, respectively.
In Figs. 10 and 11, the amplitude of E2ϕ in the direction ϕ′ = 90◦
as a function of propagation distance are shown with l=2m and 8m,
respectively. From Figs. 9 and 11, it is seen that the interference effect
will appear in the total field.

From Fig. 9 to Fig. 11, the curves of lateral wave is the same as
Dunn’s paper, and Dunn overlooked the trapped surface wave.
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Figure 7. The imaginary parts of λ1/k0 for magnetic-type trapped
surface wave vary with thickness l of ice layer.

Figure 8. The components of |E2ρ| vary with ρ for l = 2 m in direction
ϕ′ = 0◦.
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Figure 9. The components of |E2ρ| vary with ρ for l = 8 m in direction
ϕ′ = 0◦.

Figure 10. The components of |E2ϕ| vary with ρ for l = 2 m in
direction ϕ′ = 90◦.
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Figure 11. The components of |E2ϕ| vary with ρ for l = 8 m in
direction ϕ′ = 90◦.

7. CONCLUSIONS

From the above derivations and computations, it is concluded as
following: (i) the horizontal antenna underneath the ice layer can
efficiently generate both the trapped surface wave and the lateral wave,
and the amplitudes of both the waves are at about the same level and
can not be neglected; (ii) the wave number of the trapped surface
wave is dependent on the thickness l of the dielectric layer as well as
the electric parameters of the medium. If the dielectric is lossless, the
trapped surface wave will attenuate in the rate of ρ−1/2 in the far-zone
region, and the trapped surface wave is dominant term; (iii) if the
thickness of the dielectric layer is relatively large, the wave number
of the trapped surface wave λi will be significantly different from the
wave number of the lateral wave k0.

When the thickness l of the dielectric layer satisfied
√
k2

1 − k2
0 · l <

π
2 , the electric-type trapped surface wave can be excited efficiently and
the magnetic-type trapped surface wave cannot be excited. When the
thickness l of the dielectric layer satisfied

√
k2

1 − k2
0 · l > π

2 , both the
electric-type and magnetic-type trapped surface waves can be excited
efficiently. Under the condition of thick dielectric cases, the total field
will be more complex. When l satisfies nπ <

√
k2

1 − k2
0 · l < (n + 1)π,

the electric-type trapped surface wave has n + 1 modes, and if l is in
the condition of nπ− π

2 <
√
k2

1 − k2
0 · l < nπ + π

2 , the surface there are
n modes of the magnetic-type trapped surface wave.



EM field for a horizontal electric dipole 185

REFERENCES

1. King, R. W. P., “The electromagnetic field of a horizontal electric
dipole in the presence of a three-layered region,” J. Appl. Phys.,
Vol. 69, No. 12, 7987–7995, 1991.

2. King, R. W. P., “The electromagnetic field of a horizontal electric
dipole in the presence of a three-layered region: Supplement,” J.
Appl. Phys., Vol. 74, No. 8, 4845–4548, 1993.

3. King, R. W. P. and S. S. Sandler, “The electromagnetic field of a
vertical electric dipole in the presence of a three-layered region,”
Radio Sci., Vol. 29, No. 1, 97–113, 1994.

4. Wait, J. R., “Comment on ‘The electromagnetic field of a vertical
electric dipole in the presence of a three-layered region’ by
R. W. P. King and S. S. Sandler,” Radio Sci., Vol. 33, No. 2,
251–253, 1998.

5. King, R. W. P. and S. S. Sandler, “Reply,” Radio Sci., Vol. 33,
No. 2, 255–256, 1998.

6. Zhang, H. Q. and W.-Y. Pan, “Electromagnetic field of a vertical
electric dipole on a perfect conductor coated with a dielectric
layer,” Radio Sci., Vol. 37, dio:101029/2000RS002348, 2002.

7. Pan, W.-Y. and H.-Q. Zhang, “Electromagnetic field of a vertical
electric dipole on the spherical conductor covered with a dielectric
layer,” Radio Sci., Vol. 38, dio:101029/2002RS002689, 2003.

8. Zhang, H.-Q., K. Li, and W.-Y. Pan, “The electromagnetic field
of a vertical dipole on the dielectric-coated imperfect conductor,”
Journal of Electromagnetic Waves and Applications, Vol. 18,
No. 10, 1305–1320, 2004.

9. Tang, J. L. and W. Hong, “The electromagnetic field produced
by a horizontal electric dipole over a dielectric coated perfect
conductor,” Progress in Electromagnetics Research, PIER 36,
No. 3, 139–152, 2002.

10. Gradshteyn, I. S. and I. M. Ryzhik, Table of Integrals, Series, and
Products, Academic Press, New York, 1980.

11. Pan, W. Y., “Measurement of lateral waves along a three-layered
medium,” IEEE Transactions on Antennas and Propagation,
Vol. 34, No. 2, 267–277, 1986.

12. Dunn, J. M., “Lateral wave propagation in a three-layered
medium,” Radio Sci., Vol. 21, 787–796, 1986.

13. King, R. W. P., M. Owens, and T. T. Wu, Lateral Electromagnetic
Wave, Springer-Verlag, 406–452, 1992.



186 Zhang et al.

Hong-Qi Zhang received his B.Sc. degree in Radio Physics and Ph.D.
degree in Astrophysics from Lanzhou University, Lanzhou, China, in
1986, and Shaanxi Astronomical Observatory, the Chinese Academy of
Sciences, Shaanxi, China, in 2001, respectively. Since 1986, he has been
on the faculty of China Research Institute of Radiowave Propagation
(CRIRP). In 1996 he advanced to his present rank of senior engineer
at CRIRP. And in 2002 he advanced to his present rank of Professor at
CRIRP. His research interests include wave propagation, thunderstorm
location technology, and transient electromagnetic field. Dr. Zhang
won the Chinese Academy of Sciences awards for his excellent Ph.D.
thesis in 2001. (zhqoffice@163.com)

Wei-Yan Pan was born in Changzhou, Jiangsu, China, in November,
1939. He graduate from Chengdu Institute of Radio Engineering
(CIRE), Chengdu, China, with a major in Applied Mathematics in
1962, He continued his graduate program in Applied Physics from
1962 to 1965 at CIRE. During the period from June 1983 to August
1985 and June 1993 to December 1993, he was a visiting scholar at
Harvard University, USA. Since 1966, he has been with China Research
Institute of Radiowave Propagation (CRIRP). In 1987 he advanced to
his present rank of Professor at CRIRP. His research interests include
LF/VLF wave propagation and applications, thunderstorm location
technology, and analytical techniques in electromanetic theory.

Kai Li received his B.Sc. degree in Physics, M.Sc. degree in Radio
Physics and Ph.D. degree in Astrophysics from Fuyang Normal
University, Anhui, China, in 1990, Xidian University, Xi’an, Shaanxi,
China, in 1994 and Shaanxi Astronomical Observatory, the Chinese
Academy of Sciences, Shaanxi, China, in 1998, respectively. From
Aug. 1990 to Dec. 2000, he had been on the faculty of China
Research Institute Radiowave Propagation (CRIRP). From Jan. 2001
to Dec. 2002, he was a postdoctoral fellow at Information and
Communications University, Taejon, South Korea. Since Jan. 2003,
he has been a research fellow in the School of Electrical and Electronic
Engineering, Nanyang Technology University (NTU), Singapore. His
current research interests include electromagnetic theory and radio
wave propagation. Dr. Li is a senior member of Chinese Institute of
Electronics (CIE) and a member of Chinese Institute of Space Science
(CISS).

Kai-Xian Shen, Professor, National Time Service Center of Chinese
Academy of Science, Xi’an, China, 710600.


