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Abstract—We present a theoretical analysis of the radiation of
an S-shaped split ring resonator (S-SRR) for the realization of a
metamaterial exhibiting left-handed properties. It is shown that the
structure is resonant due to its internal capacitances and inductances,
which can be adjusted such that the electric plasma frequency and
magnetic plasma frequency, both due to the S-SRR only, appear within
the same frequency band. Using the same idea, we also present
some extended S-shaped split-ring resonator structures with improved
performance.

1 Introduction

2 Magnetic Properties of S-SRR

3 Conclusion

Acknowledgment

References

† Also with Electromagnetics Academy, Dept. of Information and Electronic Engineering,
Zhejiang University, Hangzhou 310027, China



232 Chen et al.

1. INTRODUCTION

Since Pendry et al. [1] proposed, in 1999, the first split-ring resonators
(SRR) which exhibits a negative permeability at a given frequency
range, multiple modified SRR structures have been reported in the
literature [2–5]. A common characteristic of all the SRR used in the
realization of metamaterials so far is that they need to be combined
with a periodic arrangement of rods in order to exhibit left-handed
properties. As a matter of fact, although it is known that the SRR itself
does respond to the electric field, the frequencies associated with this
response usually does not overlap with the frequency response due to
the magnetic field. In Ref [6], Chen et al., proposed an S-shaped SRR
structure (S-SRR) which, without the need of additional rods, produces
an electric and magnetic response within the same frequency range,
thus realizing simultaneously a negative permittivity and a negative
permeability, i.e., a left-handed metamaterial [7]. In this paper, we
present the theoretical derivation that shows the principles based on
which the S-SRR resonates and exhibits a negative permeability as well
as a negative permittivity.

2. MAGNETIC PROPERTIES OF S-SRR

A periodic array of S-SRR structures is shown in Fig. 1(a), where each
unit cell is composed of two reversed S-shaped metallic strips printed
facing each-other. Fig. 1(b) is a sketch of a unit cell in the xz plane,
where the solid line indicates the front ‘S’ pattern, and the dashed line
indicates the back ‘S’ pattern. The dimensions of a unit cell are in
the a in the z direction, b in the x direction, and l in the y direction.
Thus in the xz plane, S = ab is the area of a periodic unit. The two
opposite ‘S’-shaped metallic strips generate an ‘8’-shaped pattern and
divide the unit cell into three regions. Based on the geometry of the
S-SRR shown in Fig. 1(b), we let F1 to be the fractional volume of the
cell occupied by the top loop of the ‘8’ pattern (Area I, Loop 1), F2 to
be the fractional volume of the cell occupied by the bottom loop of the
‘8’ pattern (Area II, Loop 2), and F3 to be the fractional volume of the
cell not enclosed by the rings (Area III). Based on these definitions we
have

F1 + F2 + F3 = 1. (1)

When a time-varying external field H0 is applied in the y direction,
currents will flow in the split ring. Denoting by I1 and I2 the currents
in the two loops of the structure, the magnetic fields H1, H2 and H3 in



Progress In Electromagnetics Research, PIER 51, 2005 233

Figure 1. (a) 3-D plot of S-shaped SRR, (b) S-shaped SRR in x-z
plane.

the three areas (Area I, Area II, Area III, respectively) should satisfy:

H1 −H2 = j1 − j2
H1 −H3 = j1

H1F1 +H2F2 +H3F3 = H0 (2)

where

j1 =
I1
l

and j2 =
I2
l

(3)

From the requirements of Equation (2), we can calculate the fields in
the three areas:

H1 = H0 + (1 − F1)j1 − F2j2
H2 = H0 − F1j1 + (1 − F2)j2
H3 = H0 − F1j1 − F2j2 (4)

The units of the currents are Ampere per unit length in the y direction.
Note that Equations (2)–(4) are only valid under the assumption that
the S-SRRs are sufficiently close to each-other in the y direction, so
that the spreading of the magnetic field lines (or fringing effect) can be
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neglected. The total electromotive force (emf) around the two loops
in one unit cell can be calculated as

Loop 1 : emf1 = − ∂

∂t
(µ0H1F1S)

= σsI1 +
1
Cs

∫
I1dt+

1
Cm

∫
(I1 + I2)dt (5)

Loop 2 : emf2 = − ∂

∂t
(µ0H2F2S)

= σsI2 +
1
Cs

∫
I2dt+

1
Cm

∫
(I1 + I2)dt (6)

where σs is the resistance of the metallic strips in each loop, Cm

is the capacitance between the center metallic strips, and Cs is
the capacitance of the top and bottom metallic strips, as shown in
Fig. 1(b). Note that the currents feed into the capacitance of Cm is
I1 + I2, which can be seen from Fig. 1(b). The capacitance between
the two metallic strips can be calculated as

Cs = Cm = ε0
hc

d
+ ε0

hc

l − d (7)

Upon using Equation (4) and replacing ∂
∂t by −iω and

∫
dt by 1

−iω ,
Equations (5) and (6) become

iωµ0H1F1S − σsj1l +
j1l

iωCs
+

(j1 + j2)l
iωCm

= 0 (8)

iωµ0H2F2S − σsj2l +
j2l

iωCs
+

(j1 + j2)l
iωCm

= 0 (9)

Using Equation (3), we can first calculate j1 and j2 from Equations
(8) and (9), and then the effective permeability that was defined in [1].
We obtain:

µeff =
Bave

µ0H3
=

H0

H0 − F1j1 − F2j2
= 1 −

(ωµ0S)2F2F1(F1 + F2) − µ0S

[
(F 2

1 + F 2
2 ) 1

Cs
+ (F1 − F2)2 l

Cm

]
+ iA(σ)

(ωµ0S)2F1F2−µ0S(F1+F2)( l
Cs

+ l
Cm

)+ 1
ω2

l
Cs

( l
Cs

+ 2l
Cm

)−B(σ)+iC(σ)

(10)

where

A(σ) = ωµ0S(F 2
1 + F 2

2 )σsl
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Figure 2. Effective permeability for the S-SRR structure in the case
of F1 = 0.45 and F2 = 0.15.

B(σ) = (σsl)2

C(σ) =
[
ωµ0S(F1 + F2) −

2
ω

(
l

Cs
+

l

Cm

)]
σsl (11)

is important to realize that in general, if F1 �= F2, Equation (10) has
two resonant frequencies:

ω
(1)
m0 =

√
(m+ 1)(n+ 1) +

√
(m− 1)2(n2 + 2n) + (m+ 1)2

2mn
l

µ0SF2Cs

(12)

ω
(2)
m0 =

√
(m+ 1)(n+ 1) −

√
(m− 1)2(n2 + 2n) + (m+ 1)2

2mn
l

µ0SF2Cs

(13)

where m = F1
F2

and n = Cm
Cs

. Therefore, there will be two frequency
bands of negative permeability associated with the two resonant
frequencies. This is illustrated in Fig. 2, in which

h = 4 × 10−3 m
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w = 7.5 × 10−3 m
c = 0.5 × 10−3 m
d = 0.5 × 10−3 m
σs = 0.5 Ω
a = 10 × 10−3 m
b = 5 × 10−3 m
l = 1 × 10−3 m

F1 = 0.45
F2 = 0.15 (14)

With these parameters, the two resonant frequecies are found to be:
f

(1)
m0 = 9.17 × 109 Hz and f (2)

m0 = 4.14 × 109 Hz. If we take the fringe
effects of the capacitances into account, then the newly calculated
resonant frequency will be in good agreement with the experimental
results. In addition to the double magnetic resonance, we shall also
show hereafter that the S-shaped resonator also exhibits an electrical
plasma behavior which overlaps with the two magnetic resonances
found previously. Therefore, in the case of F1 �= F2 considered here,
the structure exhibits left-handed properties over two frequency bands.

For the special case where F1 = F2 = F , Equation (10) becomes

µeff = 1 − 2F + iD(σ)

1 − 1
ω2µ0FS

(
l

Cs
+

2l
Cm

)
− E(σ) + iG(σ)

(15)

where

X = (ωµ0FS)2
(

1 − 1
ωµ0FS

l

Cs

)
D(σ) = A(σ)/X
E(σ) = B(σ)/X (16)
G(σ) = C(σ)/X

The magnetic resonance frequency is given by

ωm0 =

√
1

µ0FS

(
l

Cs
+

2l
Cm

)
(17)

and the magnetic plasma frequency is given by

ωmp =

√
1

µ0FS(1 − 2F )

(
l

Cs
+

2l
Cm

)
= ωm0

√
1

1 − 2F
(18)
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Figure 3. Equivalent circuit of the S-SRR structure.

As predicted in [7], if we take the inductance per unit length in the y
direction of each half ring (L) to be given by the area enclosed by each
ring: L = µ0FS/l, and the capacitances to be Cs, Cm, respectively,
then the structure can be treated as an equivalent circuit, as shown in
Fig. 3. Using simple circuit theory, we can directly find the resonant
frequency of the circuit to be

ωm0 =
√√√√√√√

1

L
1

1
Cs

+
1

Cm/2

=

√
l

µ0FS

(
1
Cs

+
2
Cm

)
(19)

which agrees with (17). Fig. 4 illustrates the effective permeability
when the parameters of the structure are those of Equation (14) but
with F1 = F2 = F = 0.3.

As it has been mentioned earlier, in addition to the negative
permeability response, the proposed S-SRR also exhibits a negative
permittivity response within the same frequency range [6]. The
electrical properties of the S-SSR as shown in Fig. 5(c) are in fact
very similar to those of an array of cut rods as depicted in Fig. 5(a).
The generic form of the effective permittivity for the rods array has
been shown to be [8]

εeff = 1 −
ω2

ep − ω2
e0

ω2 − ω2
e0 + iγω

. (20)
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Figure 4. Effective permeability for the S-SRR structure in the case
of F1 = F2 = F = 0.3.

where ωe0 is the electric resonant frequency introduced by the
interruption in the rods and is determined by the inductance of the wire
strips Le and the capacitance Ce of the interruption [9]. It is important
to notice that the ‘S’ metallic strip array has a lower electric resonant
frequency than that of the cut rods array so that we can adjust the
parameters of our geometry to control the electric resonance. In fact,
we shall show that it is possible to lower it down to the frequencies
where the magnetic response is observed. First, we can lower ωe0

by enlarging the capacitance of the breaks, as shown in Fig. 5(b),
where two horizontal lines are introduced in each break to enlarge
the surface area of the capacitance, and thus the value of Ce. Fig. 6
presents the simulation results of the effective permittivity for several
different configurations of rods array corresponding to different length
of the horizontal line in Fig. 5(b). The results were obtained from the
computation of the reflection and transmission coefficients for waves
normally incident on a slab of such structure [10, 11], followed by the
application of a proper retrieval algorithm [12]. Second, by bending
the vertical rods and creating the ‘S’ pattern as shown in Fig. 5(c), the
structure still behaves like a plasma, with ωe0 and ωep further lowered
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Figure 5. Two unit cells of a periodic arrayed structure (a) a broken
rods array, (b) a capacitance-enlarged rods array, (c) a ‘S’-shaped rods
array.

Figure 6. The real part of the effective permittivity measured for
some configurations in Fig. 5. The other parameters of the structure
is: w = 9.6 mm, d = 0.4 mm, c = 0.4 mm and the dimensions of a
periodic unit cell are a = 10 mm in the z direction, b = 5 mm in the x
direction, and l = 2.5 mm in the y direction.
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Figure 7. Some ES-SRR structures with each periodic unit cell
contains n rings (top view).

by the extra inductance of the greater length of the wire [13]. The
simulation result of the effective permittivity for the ‘S’ structure in
Fig. 5(c) is also shown in Fig. 6.

Hence, we can conclude that in the S-SRR structure, each ‘S’
metallic strip exhibits an electric plasma-like behavior, and the two
opposite placed ‘S’ metallic strips exhibit a magnetic plasma-like
behavior. We can also make several S-SRRs connected with each
other, as shown in Fig. 7, to further lower the electric resonant
frequency ωe0 as desired. As the number n of rings in each unit cell of
such an extended S-SRR (ES-SRR) structure increases, the analytical
expression of the current in the loops becomes increasingly complicated
to obtain. However, if n is large enough, or theoretically infinite like
shown in Fig. 7(c), and if the unit cell is periodic in the z direction, it is
still easy to get the magnetic properties of the structure. For example,
if the unit cell has a period of 2 rings in the z direction, then we have
only two variables of currents to solve for, as shown in Fig. 8.

The total electromotive force (emf) around the two loops in one
periodic unit can be calculated from

Loop 1 : emf1 = − ∂

∂t
(µ0H1F1S)

= σs1I1+
1
C1

∫
(I1+I2)dt+

1
C2

∫
(I1 + I2)dt (21)

Loop 2 : emf2 = − ∂

∂t
(µ0H2F2S)

= σs2I2+
1
C1

∫
(I1+I2)dt+

1
C2

∫
(I1 + I2)dt (22)
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Figure 8. The ES-SRR structure with a period of 2 rings in z direction
and its analytical model.

where C1, C2 are the capacitances of the two pair of metallic strips,
respectively, and σs1, σs2 are the resistances in each loop, as shown in
Fig. 8. Using a similar procedure to that of a standard S-SRR, we can
calculate the effective permeability of the ES-SRR structure as:

µeff = 1 − A1 + iσs1l
∗A2 + iσs2l

∗A3

B1 + iσs1l∗B2 + iσs2l∗B3 − σs1lσs2l
(23)

where

A1 = (µ0S)2F1F2

[
ω2(F1 + F2) −

(
l

C1
+

l

C2

)
(F1 − F2)2

(µ0S)F2F1

]

B1 = (µ0S)2F1F2

[
ω2 −

(
l

C1
+

l

C2

)
(F1 + F2)
(µ0S)F1F2

]
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A2 =
µ0SF2

ω
(ω2F2)

B2 =
µ0SF2

ω

[
ω2 − 1

µ0SF2

(
l

C1
+

l

C2

)]

A3 =
µ0SF1

ω
(ω2F1)

B3 =
µ0SF1

ω

[
ω2 − 1

µ0SF1

(
l

C1
+

l

C2

)]
(24)

The magnetic resonance frequency is

ωm0 =

√(
l

C1
+

l

C2

)
(F1 + F2)
(µ0S)F1F2

(25)

and the magnetic plasma frequency is

ωmp =

√(
l

C1
+

l

C2

)
(F1 + F2) − (F1 − F2)2

(µ0S)F1F2(1 − F1 − F2)

= ωm0

√
(F1 + F2) − (F1 − F2)2

(1 − F1 − F2)(F1 + F2)
(26)

Using the following values:

h = 3 × 10−3 m
w1 = 3 × 10−3 m
w2 = 5 × 10−3 m
c = 0.5 × 10−3 m
d = 0.5 × 10−3 m
a = 9 × 10−3 m
b = 5 × 10−3 m
l = 1 × 10−3 m

σs1 = 0.5 Ω
σs2 = 0.5 Ω (27)

the calculated effective permeability is shown in Fig. 9.
In this structure, we can find that the metallic strips maintain

the electrical continuity, which indicates that the electrical resonant
frequency is ωe0 = 0. Therefore, the lower limit of the frequency band
corresponding to the negative permittivity is pushed from a non-zero
value to a zero value, and therefore, the frequency band of negative
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Figure 9. Effective permeability for the ES-SRR structure.

permittivity is enlarged. Also, we see from Equation (26) that when
the value of F1 + F2 = F is unchanged (i.e., only the ratio of F1/F2

is modified), only the case corresponding to F1 = F2 = F/2 yields
the widest frequency band of negative permeability represented by
ωmp/ωm0 =

√
1

1−F .
We can also deduce from Equation (23) two other special cases.

The first happens when Re(σs1) � 1, for which Equation (23) becomes

µeff = 1 − A2

B2 + iσs2l
= 1 − F2

1 − 1
ω2µ0SF2

(
1
C1

+
l

C2

)
+ i

σs2l

ωµ0SF2
(28)

Equation (29) exhibits a similar form as the result of the SRR proposed
in [1]. In general, σs1 and σs2 are complex numbers and Re(σs1) � 1
indicates that part of the ES-SRR ring is made of insulator material,
as shown in Fig. 10(a). Therefore, the ES-SRR structure is simplified
to be a periodic structure of SRR (Fig. 10(b)) with a resonant

frequency of ωm0 =
√

1
µ0SF2

(
l

C1
+ l

C2

)
and a plasma frequency of

ωmp = ωm0

√
1

1−F2
.
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Figure 10. The ES-SRR structure in (a) is simplified into the split
ring structure in (b) in the case of Re(σs1) � 1.

The second special case happens when Re(σs2) � 1. In this case,
Equation (23) becomes

µeff = 1 − A3

B3 + iσs1l
= 1 − F1

1 − 1
ω2µ0SF1

(
1
C1

+
l

C2

)
+ i

σs1l

ωµ0SF1
(29)

The resonant frequency is ωm0 =
√

1
µ0SF1

(
l

C1
+ l

C2

)
and the plasma

frequency is ωmp = ωm0

√
1

1−F1
.
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3. CONCLUSION

In conclusion, we have theoretically calculated the effective permeabil-
ity of an S-shaped SRR structure and other several extended S-shaped
SRR structures. We concluded that in these ‘S’-characterized struc-
tures, each S-shaped branch of the metallic strip exhibits an electric
plasma-like behavior, and the two opposite placed ‘S’ metallic strips
exhibit a magnetic plasma behavior at certain frequency bands. We
find that the electric resonant frequency of the S-SRRs is very low and
could be further lowered by connecting a series of such S-SRRs to-
gether, to generate the ES-SRR structures. Thus, the frequency band
of negative permittivity could be tuned to overlap with the frequency
band of negative permeability to realize a metamaterial exhibiting left-
handed properties.
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