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Abstract—The analysis was developed for a coaxial waveguide for
two configurations — one in which the central conductor is corrugated
in axial slot-wedges, with ridge-wedges between them, and the other in
which the outer conductor is provided with radial metal vane-wedges.
Azimuthal harmonics were considered in the structure regions, the
effects of which were ignored in earlier published analyses based on
the surface impedance model to replace the interface between the
two structure regions by a homogeneous reactive surface. For both
the structure configurations, one and the same form of the dispersion
relation with proper interpretation of the symbol for the radius of
the ridge/vane was obtained. The dispersion relation obtained by the
present analysis was validated against that obtained by other analytical
methods reported in the literature.

The shape of the dispersion characteristics is found uncontrollable
by the structure parameters, and therefore the structure cannot be used
for broadbanding a gyro-TWT. However, the plot of the eigenvalue
versus the ratio of the outer conductor to ridge/vane radii strongly
depended on the ridge/vane parameters. Thus the structure with
its cross section tapered and ridge/groove parameters optimized has
the potential for providing mode rarefaction in high-power, over-sized,
over-moded gyrotrons.
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1. INTRODUCTION

The characteristics of a waveguide would change if the guide wall
had not been smooth, and this has been used to advantage in
numerous microwave-engineering applications. Thus providing vanes
or corrugation with waveguides has been a well-known practice to
modify the characteristics of propagating or resonating structures,
antennas and interaction structures for electron beam devices [1–6].

A cylindrical waveguide loaded with axially periodic annular disks
or vanes is employed as a slow-wave structure in the linear electron
accelerator [1]. Similarly, a waveguide is loaded with ridges to widen
its bandwidth and also, if required, to reduce its overall size at
lower microwave frequencies or in UHF band [2]. Corrugated horn
antennas have applications as low-noise feeds of reflector antennas
used in satellite communication, radio astronomy, radiometry, etc.
[3–5]. In the conventional microwave tube family, azimuthally
periodic cavities/vanes make the anode-cum-slow wave structure of
a magnetron. Similarly, azimuthally periodic vanes projecting radially
inward from the metal envelope of a helix traveling-wave tube (TWT)
control the dispersion of the helix and hence widen the bandwidth of
the TWT [6].

A cylindrical waveguide provided with vanes — referred to in the
literature as a magnetron-like structure — however, does not provide
the required dispersion control for a broadband coalescence between
the beam-mode and waveguide-mode dispersion characteristics for
wide bandwidths of a gyro-TWT [7, 8]. Nevertheless, such vane
loading has been suggested for a gyrotron, in large-orbit configuration,
operating at a higher beam harmonic with a waveguide-axis-circling
hollow electron beam of a smaller radius. Such a configuration would
not only relax the required background magnetic field of the gyrotron,
but also call for lower electron beam energies and provide superior
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mode selectivity [7–10]. Furthermore, vane loading, although it does
not widen the bandwidth of a gyro-TWT by controlling the waveguide
dispersion, enhances the device gain. Therefore, such vane loading has
been suggested to compensate for the gain of a gyro-TWT that would
deteriorate in an attempt to widen the device bandwidth by tapering
the waveguide cross section [10].

Recently, the concept of vane loading has also been extended to a
coaxial cavity gyrotron in which the central conductor of the cavity is
corrugated with axial slots and the structure is tapered for rarefaction
of modes in the structure, which is made over-sized and hence also
over-moded in order to increase the power capability of the device.
Mode rarefaction in such a corrugated coaxial cavity gyrotron can be
made more effective by optimizing the corrugation parameters [11–13].

We have restricted this paper to the cold (beam-absent) analysis
of a vane loaded coaxial waveguide in the two configurations of the
structure — one labeled as A, in which the central conductor is
corrugated in axial slots with radially outward wedge-shaped metal
ridges between them and the other, labeled as B, in which the outer
conductor is provided with radially inward wedge-shaped metal vanes.
Both the configurations have defined ridge/vane radial depth, angular
width and supposedly uniform angular periodicity (Fig. 1). It will be
of interest to validate the dispersion relation obtained by the present
analysis against that obtained by other analytical methods reported in
the literature [13].

2. ANALYSIS

Dasgupta and Saha [14], using Ritz-Galerkin technique, analyzed a
quadrapule-ridged cylindrical waveguide with a coaxial insert. Chong
et al. [7] analyzed the same problem, however, considering an arbitrary
number of ridges or vanes; they took into account azimuthal harmonic
effects though only in the vane-free region. Shrivastava [8] simplified
the analysis by treating the region between vanes of the cylindrical
waveguide as a fundamental-mode rectangular waveguide with the
electric field being solely azimuthal. The analysis due to Singh et al.
[9], also subsequently used by Agrawal et al. [10] for a gyro-TWT in a
vane-loaded cylindrical waveguide, is somewhat more general in that
it has azimuthal harmonics in both the vane-free and vane-occupied
regions of the structure considered. The eigenvalues of the vane-loaded
waveguide calculated by these analyses fairly agree to one another [9].

Furthermore, Li and Li [11], Iatrou et al. [12] and Barroso et al. [13]
analyzed a coaxial waveguide with a corrugated central conductor by
a simplified surface impedance model approach. In this approach, the
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Figure 1. Cross section of a coaxial waveguide with ridged central
conductor (configuration A) (a) and with vane-loaded outer conductor
(configuration B) (b).
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surface impedance is matched at the interface that radially separates
the region I, containing the slots/vanes positioned at a regular angular
interval, from the vane-free region II. For sufficiently large number
of thin vanes/slots, the interface was considered as a homogeneous
reactive surface. The azimuthal harmonics in region II, where TE
modes are of more significance than TM modes in a gyrotron [15], the
fields were taken as if they were for a smooth-wall coaxial waveguide
[11–13].

In this section, the analysis of the vane-loaded coaxial waveguide is
developed that includes the rigor of considering azimuthal harmonics
in both the regions I and II into which the configurations A and B
each may be divided (Fig. 1). Here, for configuration A, the region I
(rC ≤ r ≤ rV ) is the inter-vane free-space region within the angular
bounds of φ/2 ≤ θ ≤ (2π/N − φ/2) and, for configuration B, it is the
tubular free-space region within the angular bounds of 0 ≤ θ ≤ 2π. For
configuration A, the region II (rV ≤ r ≤ rW ) is the tubular free-space
region within the angular bounds of 0 ≤ θ ≤ 2π and, for configuration
B, it is the inter-vane free-space region φ/2 ≤ θ ≤ (2π/N − φ/2).
For both the configurations A and B, rC is the radius of the central
conductor (which is corrugated in configuration A) and rW is the radius
of the waveguide wall (which is provided with vanes in configuration
B), rV is the radius of the outer edge of vanes (ridges) for configuration
A and that of the inner edge of vanes for configuration B. N and φ are
respectively the number and the wedge angle of vanes/ridges, which
are taken as azimuthally equispaced (Fig. 1).

2.1. Field Expressions

The effect of azimuthal harmonics due to angular periodicity of vanes
may be taken into account by multiplying the usual RF dependence
factor exp[j(ωt − βz)] exp(−jmθ) for a cylindrical waveguide by the
factor exp[−jk(2π/Θ)θ] = exp(−jkNθ). Here, ω is the signal angular
frequency, β is the axial phase propagation constant, m and k are the
integers, Θ = 2π/N is the angular periodicity of vanes, and N is the
number of vanes. Therefore, considering these two factors into account,
the RF quantities in the structure for both the configurations A and
B will have the angular dependence exp[−j(m+ kN)θ] = exp(−jvθ),
where v = m+kN is an integer. Hence the TE-mode (Ez = 0) solution
to the wave equation for the structure (Fig. 1) for the field quantities
may be written as [1, 16]:

Hz,p =
v=+∞∑
v=−∞

(Av,pJv{kcr} +Bv,pYv{kcr}) exp(−jvθ) (1a)
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′
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cr
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in which the dependence exp j(ωt − βz) is understood. Here, p = 1
and 2 refer to the structure regions I and II, respectively. Av,p and
Bv,p are the field constants. Jv and Yv are the vth order ordinary
Bessel functions of the first and second kinds, respectively. The prime
indicates the differentiation of Bessel functions with respect to their
argument. kc = (ωc/c) is the cutoff wave number, ωc being the cutoff
angular frequency.

2.2. Boundary Conditions

Mathematically, the electromagnetic boundary conditions may be
written as

Eθ,1 = Eθ,2

∣∣∣
r=rV

(configurations A and B) (2)

[φ/2 ≤ θ ≤ 2π/N − φ/2 (configuration A); φ/2 ≤ θ ≤ 2π/N − φ/2
(configuration B)]

Eθ,1 = 0
∣∣∣
r=rC

(configurations A and B) (3)

[φ/2 ≤ θ ≤ 2π/N − φ/2 (configuration A); 0 ≤ θ ≤ 2π (configuration
B)]

Eθ,2 = 0
∣∣∣
r=rW

(configurations A and B) (4)

[0 ≤ θ ≤ 2π (configuration A); φ/2 ≤ θ ≤ 2π/N − φ/2 (configuration
B)]

Hθ,1 = Hθ,2

∣∣∣
r=rV

(configurations A and B) (5)

[φ/2 ≤ θ ≤ 2π/N − φ/2 (configuration A); φ/2 ≤ θ ≤ 2π/N − φ/2
(configuration B)]

Hr,1 = 0
∣∣∣
r=rV

(configurations A and B) (6)
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[−φ/2 ≤ θ ≤ φ/2; (configurations A and B)].
The boundary condition (2) represents the continuity of the

tangential component of electric field intensity at the interface between
the regions 1 and 2. The boundary conditions (3) and (4) each
arises from the tangential component of electric field being zero at the
conducting boundary at the inner and outer conductors, respectively.
The continuity of the tangential component of magnetic field intensity
at interface between regions 1 and 2 is represented by the boundary
condition (5). The boundary condition (6) follows from the normal
component of magnetic flux density being zero at the conducting vane-
edge.

2.3. Dispersion Relation

With the help of boundary conditions (1)–(3), into which the field
expression (1) is substituted, one may express the field constants
Av,2, Bv,1 and Bv.2 in terms of a single constant, namely Av,1, as
follows:

Av,2 =
(
ξv − ηv

ξv − χv

)
Av,1 (7)

Bv,1 = −ηvAv,1 (8)

Bv,2 = −χv

(
ξv − ηv

ξv − χv

)
Av,1 (9)

where

ηv =
J ′

v{kcrC}
Y ′

v{kcrC}
, χv =

J ′
v{kcrW }
Y ′

v{kcrW } , and ξv =
J ′

v{kcrV }
Y ′

v{kcrV }
.

Now, in order to obtain the dispersion relation, one may substitute
(1e) into the boundary condition (5), multiply it by exp(−jv′θ),
where v′ = m + k′N , and integrate it between the limits θ = φ/2
and 2π/N − φ/2, where k′ is an integer. We may then add the
result thus obtained to the result similarly obtained by multiplying
the boundary condition (6), into which (1c) is substituted, also by
exp(−jv′θ), but now integrating it between the limits θ = −φ/2 and
φ/2. While using the boundary conditions (5) and (6), one has to
use the appropriate ranges of structure parameters of the concerned
configurations A and B, as indicated following the respective boundary
conditions. The procedure leads to an equation in terms of the
constants Av,1, Av,2, Bv,1 and Bv,2, the last three of which may be
expressed in terms of a single constant, namely Av,1, with the help of
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(7)–(9). The resulting equation is

v=+∞∑
v=−∞

Av,1




{
Sv −

(
ξv − ηv

ξv − χv

)
Tv

} (2π/N)−φ/2∫
φ/2

exp{j(v − v′)Nθ}dθ

+ Rv

φ/2∫
−φ/2

exp{(v − v′)Nθ}dθ


 = 0 (10)

where

Rv = J ′
v{kcrV } − ηvY

′
v{kcrV } (11)

Sv = Jv{kcrV } − ηvYv{kcrV } (12)
Tv = Jv{kcrV } − χvYv{kcrV }. (13)

We may divide the terms of equation (10) into two parts, one
corresponding to v = v′ and the other to v �= v′, which after evaluation
of the integrals becomes

αvAv,1 +
∞∑

v=−∞
(v �=v′)

δv,v′Av,1 = 0 (14)

where
αv = Rvφ+

{
Sv −

(
ξv − ηv

ξv − χv

)
Tv

}
(2π/N − φ) (15)

and

δv,v′ =
2 sin

[
(v − v′)

(
Nφ

2

)]
N(v − v′)

[
Rv −

(
Sv −

(
ξv − ηv

ξv − χv

)
Tv

)]
. (16)

Now, considering only the three consecutive modes of practical
relevance: v, v′ = µ − 1, µ, µ + 1 (v �= v′) corresponding to: (i)
v′ = µ, v = µ+1, v = µ−1; (ii) v′ = µ+1, v = µ, v = µ−1; and (iii)
v′ = µ− 1, v = µ, v = µ+1, respectively, we obtain from (14) a set of
three simultaneous equations in Fourier components Aµ,1, Aµ+1,1 and
Aµ−1,1.

αµAµ,1 + δµ+1,µAµ+1,1 + δµ−1,µAµ−1,1 = 0
δµ,µ+1Aµ,1 + αµ+1Aµ+1,1 + δµ−1,µ+1Aµ−1,1 = 0 (17)
δµ,µ−1Aµ,1 + δµ+1,µ−1Aµ+1,1 + αµ−1Aµ−1,1 = 0.
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The characteristic equation of the structure is obtained as the
condition for the existence of the non-trivial solutions of (17) that the
determinant formed by the coefficients of the constants occurring in
these equation should vanish. When the said determinant is worked
out and simplified, the condition reads as

αµαµ+1αµ−1 − αµδµ−1,µ+1δµ+1,µ−1 + δµ+1,µδµ,µ−1δµ−1,µ+1

−δµ+1,µδµ,µ+1αµ−1+δµ−1,µδµ,µ+1δµ+1,µ−1−δµ−1,µδµ,µ−1αµ+1 =0. (18)

The individual terms of (18) may be read with the help of (15)
and (16). For practical situations, the first term in the left-hand side of
(18) dominates over the remaining terms. For instance, in the present
context, let us interpret µ = v(= m + kN) and take typically, v = 0
and the structure parameters as Nφ = 2π/3, rV /rW = 0.5, rC/rW =
0.186. This would make the magnitudes of the first through sixth terms
as: 1.1929×10157, 5.0351×10−8, 1.21157×10−4, 1.4385×103, 1.2157×
10−4, and 2.0139 × 10−7 respectively. Therefore, retaining only the
dominating first term in the left-hand side of (18), and choosing to
replace the integer µ by v(= m+ kN), we get

αvαv+1αv−1 = 0. (19)

Each of the three factors of (19) when equated to zero yields the
dispersion relation for each of the three possible waves. It turns out
that, out of these waves, the one that gives the solution for the desired
mode is:

αv = 0. (20)

With the help of (15) and which has to be read using (11)–(13),
one may express the dispersion relation (20) in the following explicit
form

[
J ′

v{kcrV } − ηvY
′
v{kcrV }

]
φ+

[
Jv{kcrV } − ηvYv{kcrV }

−
(
ξv − ηv

ξv − χv

)
(Jv{kcrV } − χvYv{kcrV })

]
× (2π/N − φ) = 0.

(Configurations A and B) (21)

In (21) one gets the one and the same form of the dispersion
relation for both the configurations A and B, however, with due care
in the meaning of the symbol rV given in the beginning of the present
section. Accordingly, the ridge depth in configuration A is rV − rC ,
while the vane depth in configuration B is rW − rV . As a special case
of φ = 0, and rV = rW , the dispersion relation (21) for the ridge or
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vane loaded coaxial waveguide (for either of the configurations A and
B) passes on to that of a smooth-wall coaxial waveguide excited in
TEv,n mode:

J ′
v(kcrW )Y ′

v(kcrC) − J ′
v(kcrC)Y ′

v(kcrW ) = 0

which, in turn, passes in its further special case φ = 0, rC = 0 and
rV = rW to that of a smooth-wall cylindrical waveguide excited in
TEv,n mode: J ′

v(kcrW ) = 0.

3. RESULTS AND DISCUSSION

The dispersion relation (21) may be used for plotting the ω-β dispersion
characteristics of the coaxial waveguide. The shape of such plots
for both the configurations A and B of the structure does not
change with the ridge/vane parameters (Fig. 2). Therefore, these
parameters do not have any significance in widening the bandwidth
of the coalescence between the waveguide-mode and the beam-mode
dispersion characteristics. Hence the ridge/vane loading does not have
a role in broadbanding of a gyro-TWT. In fact, the vane parameters
merely control the cutoff frequency and hence the eigenvalue of the
structure. The plot of the eigenvalue versus the ratio of the outer
conductor to ridge/vane radii for the various ridge/vane parameters
(Figs. 3 and 4) would be significant, for instance, in the study of the
effectiveness of the vane parameters in mode rarefaction in gyrotrons
by cross section tapering of the structure reported in the literature
[12, 13].

The results obtained by the present approach, in which the
azimuthal harmonics have been considered in both the regions I and II,
have been validated against those of Barroso et al. [13], the latter based
on the surface impedance approach and explained in the beginning
of Section 2. Barroso et al. [13], however, gave the results only
for configuration A. For configuration B, the present results of the
vane-loaded coaxial waveguide have been compared, though for only a
special case (without a central conductor), with those of a vane-loaded
cylindrical waveguide; the latter available in Singh et al. [9]. One
may continue to use the present symbols for comparing the results
with those of Singh et al. [9] (with reference to configuration B).
However, for the sake of comparison with Barroso et al. [13] (with
reference to configuration A), one finds it convenient to express the
ridge parameters in terms of l, s, d and R, where l is the arc length of
the slot width at the base of the slot, s is the arc length representing
the periodicity of the slots/ridges at the mouth of the slots/outer edge
of the ridges, d is the ridge depth and R is the ridge depth relative
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Figure 2. ω-β dispersion characteristics of a coaxial waveguide excited
typically in TE6,2 mode for configurations A (a) and B (b), taking the
ridge/vane dimensions as the parameters.



308 Singh, Jain, and Basu

R= 0.2   Present analysis
* * Barroso et al.[13 ]

k c
 r

W

rW rV/

(a)

k c
 r

W

rW  rV

l/s =0.42   Present analysis
* * Barroso et al.[13]

/

(b)

Figure 3. Variation of the eigenvalue of the typical waveguide mode
TE6,2 with the ratio of the waveguide to ridge radii for configuration A,
taking the slot width relative to the ridge periodicity (a) and the ridge
depth relative to the outer ridge-edge radius (b) as the parameters.
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Figure 4. Variation of the eigenvalue of the typical waveguide mode
TE0,1 with the ratio of the waveguide to ridge radii for configuration
B, taking the vane dimensions as the parameters.

to the outer ridge-edge radius rV (Fig. 1(a)). From the geometry of
configuration A, the ridge parameters in the present nomenclature of
the present analysis are related to the ridge parameters l, s, d and
R used by Barroso et al. [13] as Nθ/2π = 1 − (l/s)/(1 − d/rv) and
(rV −rC)/rV = R. For typical parameters, the present results are found
to closely agree with both Barroso et al. [13] (Fig. 3) for configuration
A and with Singh et al. [9] for configuration B, though the latter in
a special case of the structure without the central conductor (Fig.
4). The plots of the eigenvalue versus the ratio of the waveguide to
vane/ridge radii (Figs. 3 and 4), though they refer here to a typical
mode, may be drawn for the other neighboring modes, too. The
slopes of such plots for the competing modes may be controlled by
the ridge/vane parameters for the purpose of mode rarefaction in over-
sized high power gyrotrons [12, 13]. The details of such study are,
however, kept outside the scope of the present work.

It is hoped that the dispersion relation obtained by the present
analysis that takes the azimuthal harmonic effects into account should
be useful in the design of a coaxial waveguide with a corrugated inner
conductor or a vane-loaded outer conductor for high power gyrotrons.
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