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Abstract—An optimization problem for designing non-uniformly
spaced, linear arrays is formulated and solved by means of an improved
genetic algorithm (IGA) procedure. The proposed iterative method is
aimed at minimizing the side-lobes level and thinning the array by
optimizing the element positions and weights. Selected examples are
included, which demonstrate the effectiveness and the design flexibility
of the proposed method in the framework of electromagnetic synthesis

of linear arrays.
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1. INTRODUCTION

The global synthesis of antenna arrays that generate a desired radiation
pattern is a highly nonlinear optimization problem. Many analytical
methods have been proposed for its solution. Examples of analytical
techniques include the well-known Taylor method and the Chebishev
method [1]. However, analytical or calculus-based methods are
generally unable to optimize both positions and weights of the array
elements. To this end, stochastic methods are necessary [2, 3] in order
to efficiently deal with large nonlinear search spaces and to extend the
analysis also to the elements placement.

In the literature, problem-tailored Genetic Algorithms (GAs) have
been largely applied to various test cases [4]. As far as symmetrical
array synthesis is concerned, a real-coded GA-based procedure was
proposed in [5] for the optimization of the array weights when the
sensors are A/2-spaced. Moreover, in [6] and in [7] a binary genetic
algorithm was applied in order to deal with isophorical array thinning,
and in [8] a stochastic approach was proposed aimed at optimizing
isophorical arrays with a fixed number of elements. Unfortunately,
these approaches consider symmetric arrays in order to reduce the
computational time.

On the other hand, in [4,9] the array optimization has been
investigated by considering a higher number of degrees of freedom such
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as elements position and weighting. Toward this end, an optimization
method based on a simulated annealing (SA) process was applied in
[4] to the simultaneous weights and positions optimization, and in [9]
to the global array synthesis and beam pattern shaping.

In this framework, this paper is aimed at presenting a modular
method, based on a Genetic Algorithm, able to synthesize linear, real-
weighted arrays according to different constraints, such as side lobes
peak minimization, array thinning, linear dimension minimization, and
beam pattern (BP) shape modeling. Several successfully investigated
test cases seem to confirm the effectiveness, but also the flexibility and
suitability of the proposed GAs-based procedure for the antenna array
optimization.
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Figure 1. Linear array geometry.

2. MATHEMATICAL FORMULATION

Let us consider the linear array shown in Fig. 1, where M non-uniformly
spaced elements are located along a straight line (L) at the positions
xg, k=20,...,M — 1. The beam pattern function of the array, p(u),
is defined as follows

M—-1 I
p(u) = Z wyed X TR (1)
k=0

where wy is the weight coefficient of the k-th element, A is the
background wavelength, u = sin # — sin 6, being 6 and 6y the incident
angle of the impinging plane wave and the steering angle of the array,
respectively.

In order to generate a BP that fulfills some constraints (e.g., side
lobes level (SLL) lower than a fixed threshold) or reproduces a desired
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shape (p"¢f(u)), it is necessary to synthesize an array configuration.
Firstly, a measure of the difference between desired and synthesized
beam pattern should be defined. Toward this end, let us define a
function called fitness function, f, as follows

_ 1
= _ — — — 2
MO = 750 + hafor @ T @ T lafo©
where ( = [M;20,..., Tk, s TA—15 W0« - -, Wk, - .-, Wrr—1)0 is the
unknown array and
fsLr(C) = @
w2 (Pan (W)}
1ar@ = [ (22 e w)) au
c=y
() = M
fo(Q) =D

Ugtart Deing a value that allows excluding the main lobe from the
calculation of the SLL. Moreover, D is the array aperture, @ is
a normalizing constant, and S is the range of values for which
{pap(w)/Q} > pied (u), pf (u) being the desired BP shape. Finally,
k1, ko, ks, and k4 are normalizing coefficient chosen according to the
optimization strategy.

The resulting fitness function defined in (2) is highly non-linear
with a large number of local maxima, where deterministic procedures
can be trapped. Consequently, a stochastic method able to avoid
local maxima and effective in exploring highly non-linear search spaces
should be used to solve the maximization problem at hand. GAs have
already proven their effectiveness in optimizing antenna arrays and
seem to be a reasonable choice.

3. GA-BASED COMPUTATIONAL TECHNIQUE

GAs are optimization methods based on Darwinian theory of evolution.
They simulate the evolution of a population of individuals (i.e., a set of
trial solutions for the addressed problem dealt with) over time favoring
the improvement of individual characteristics (i.e., the fitting with
some constraints evaluated by means of a fitness function).

Standard GAs (SGA) differ from other optimization methods
because of these characteristics [16, 17]:
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e SGAs work with a coding of the parameters, not with the
parameters themselves;

e SGAs are multiple-agent searching procedure (i.e., multiple
sampling of the search space);

e SGAs do not need to use derivatives;
e SGAs use random transition rules, not deterministic ones.

According to [10], SGAs have to be customized for each application in
order to give optimal results. Toward this end, an improved genetic
algorithm (IGA) is proposed for some classes of antenna synthesis
problems. The flow chart of the IGA is shown in Figure 2. The main
features of the algorithm are:

e the use of an hybrid coding;

e the independence of the chromosome’s genes (i.e., the genes
representing the placement of the array elements and the weights
coefficients are optimized at the same time);

e the design of a-priori knowledge-augmented operators;
e the definition of an adaptive evolution strategy;
e the hybridization with a local search algorithm.

In the following, a detailed analysis of the proposed maximization
strategy is presented.

3.1. Parameters Representation

SGAs code an individual with a binary array (also called chromosome),
so that pseudo-Boolean optimization problems (see for example [6, 8])
are accurately handled. If discrete parameters are taken into account, a
coding procedure is needed. Each parameter is represented by a string
of ¢ bits, where ¢ = logy(L), L being the number of values that the
discrete variable can assume [11]. Nevertheless, when real unknowns
are considered, binary coding is unpractical and disadvantageous
because of the quantization noise and time consuming coding/decoding
procedures [12]. In order to overcome these drawbacks, a real-valued
representation should be used [13].

As far as the antenna synthesis of a linear (A\/2) equally spaced
array is concerned (to prevent grating lobes), different kinds of
parameters have to be optimized: number of active elements, M,
and weights of active elements {wy;k = 0,...,M — 1}. In order to
effectively address this problem by means of a GA-based procedure,
a hybrid coding is used. The chromosome assumes the following
structure

E={M;bg,...,bg,...,bN_1; W0, .., W,..., WN_1} (3)
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Figure 2. Flowchart of the improved genetic algorithm.
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where by, is a boolean value indicating the state (turned on or off) of the
kth array element, & is the integer number of (\/2) intervals between

the kth element and the left array limit (2 = k3), wy is the related

excitation coefficient, and N is the number of intervals (% in length)
in which the array length has been discretized.

According to the adopted representation, suitable genetic
operators have to be defined in order to obtain admissible solutions and
to enhance the convergence process. In the proposed implementation,
although the mutation remains a means for exploring new regions of the
solution space and crossover constitutes the way to mix the best genes
of the current population. In our implementation some innovative
choices have been applied.

3.2. Genetic Operators

e Selection

A Roulette Wheel Selection [14] with fitness scaling is considered.
As far as the scaling is concerned the following rule is applied

fi= (fima = 120)" = (i = )" (4)

where f’ is the scaled fitness function, f%9 is the average fitness value
of the current population and f“°$! indicates the lowest fitness value,
1 being the generation index. The values of m and n are heuristically
defined in order to avoid premature convergence and to speed up the
search when the population approaches convergence [15].

o Crossover

The crossover is aimed at exchanging gene information between
chromosomes. The use of the crossover to improve the offspring
production is undoubtedly problem-oriented. An effective design
greatly increases the convergence rate of the maximization process.
Due to the hybrid chromosome representation, a different strategy is
considered for the real or boolean part of the chromosome. Let us

consider two selected parents, E(a) and Z(b), and a randomly selected
crossover point kg

_(a) a a a a a a
£ = {M( i >,,..,b,gsll,b,gg,b,gjﬂ,...,bgvzl;
@ (@) (a) @)

(a)
Wy 'y Wy Wy W Ygs e W

=) b b b b b
£ = {M<b>;bg>,...,bgg,l,b,gg,b;gﬂ,...,bgg_l;

b b b b b
ol e (5)
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After crossover operation, the offspring result equal to

[E(a)}/ _ {Mm); by, b [biflll}, SR [b%)—l}/ 5

al?s el w2 o] 6
qu/ = {A4wx[b?ﬂ',..,@g}ly,bikbﬁll,.wb%>1; v
] [ ol )

For the real part of the chromosome, a real-crossover is performed
according to a modified version (for variable length chromosomes) of
the algorithm preliminarily proposed in [13], then

[w,(;l)}/ =r {w,(ca)} +(1—=7) [w,gb)]
[w,(fb)}/ =(1-7r) [w,(fa)} +r [w,gb)]

r € [0, 1] being a random number such that the resulting gene belongs
to the acceptance domain defined according to the a-priori knowledge

(7)

wi;l'lll’l

IN

[w,ﬁ“)}/gw;;?ax k=0,...,N—1 s

wmin < [w(b):|/ < quinax
k k = %Yk
where wkmin and wi'® are fixed constants whose values are chosen to
avoid mutual coupling effects arising in dense arrays.
On the other hand, boolean positions obey to a semi-probabilistic
rule. The sensors states are preserved or changed with probability r
for one child and 1 — r for the other, respectively

1 (a)]’ a
) = b

'b’(cb)' ' b’(cb)

[b(a)_}/ _ { 1 with probability r
£ [b(a)} y {b(b)} k 0 W.lth probab.ll.lty (1—r)
k k 07 { 1 with probability (1 —r)

it b =

1"k | =1 0 with probability

(9)
The crossover is performed with a probability p. and the reproduction
with a probability (1 — p.).
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o Mutation

The mutation is performed with probability p,, on a chromosome
of the population. Then a mutation occurs, with probability pp.,.
The value of a string position is changed in order to introduce some
variations into the chromosome. The mutation is performed following
different strategies according to the type of the gene to mutate. If the
randomly selected gene is binary-valued, by, then a standard binary
mutation is adopted [16] by using different probabilities for the death
or the birth of the array element

b not{bk}‘bk_o with probability ppiren 10)
byl = = 10
not{bk}‘b ) with probability pgeatn
=

Otherwise, a random mutation has been designed for real-valued genes
as well
!/
[w] = wi +n (11)

1 being a random value such that the obtained solution be physically
admissible.

e FElitism

To avoid losing the fittest individual from one generation to
another, the elitism is applied [16]. At each generation the best chro-
mosome obtained so far is reproduced in the new population.

3.3. GA-Hybridizaiton

Generally, a GA-based procedure is fairly slow to “fine tune” the
optimum solution after locating an appropriate region (attraction
basin) in the solution space. On the contrary, gradient-descent
algorithm can do well in local optimization, but they can be trapped
in local maxima of a highly nonlinear fitness function. To overcome
these problems, a hybridization including the essence and merits of
GA and gradient-descent methods is introduced. The idea is to embed
a gradient-descent algorithm into the evolution concept of the GA in
order to provide a structured random search (Fig. 2). The proposed
hybridization works at different levels:

e basic level (i.e., at each iteration of the IGA);
e high level (i.e., during the evolution process).
At each generation (7), the procedure operates as a SGA performing

selection, the crossover, the mutation and the elitism. Successively,
a “Modified G-Bit Improvement” (MGbI) is performed. A randomly



10 Donelli et al.

selected chromosome, ¢, is modified by sweeping each gene, &;1 =
0,...,2N. Boolean-valued genes are changed ([§;]* < not{{;}) and real

valued genes slightly updated ([§]* < & + 7 SR [—1,1]). At

N-1
Wk
k=0
each step (1 =0,...,2N), a difference is computed between the values
of the fitness function evaluated by using the new field configuration

and the last accepted configuration, Af = f(€) — f(€). If Af >0

then we accept the new chromosome configuration, thus setting & = €.
Otherwise, the trial configuration is rejected.

As far as the high-level hybridization is concerned, once a fixed
threshold in the fitness function has been reached (f (_?pt) > v), the
geometry of the array (i.e., genes (MP;p%", ..., bzpt, L D) s
frozen and a local search is performed by means of a standard Polak-
Ribiere conjugate-gradient algorithm [18] to further improve the array

. opt opt opt
weights (wg", ..., wy ..., WN_q)-

4. NUMERICAL RESULTS

To assess the effectiveness of the proposed approach, different test cases
were investigated. In this section, representative numerical results
are presented and compared with reference solutions (available in
literature) in order to assess the effectiveness and the flexibility of the
proposed method.

4.1. Optimization of Elements Positions and Weights —
Side Lobes Level Minimization

In the first example, the minimization of the maximum side lobes
level (®4;,) by varying element weights is addressed. Concerning this
problem, in [4] the synthesis procedure was applied to a linear array
of 25 isotropic elements D = 50\ in length. In order to compare the
performances of the IGA-based optimization with the results achieved
by Trucco et al. [4], the parameter ustq+ wWas set to 0.04 and weight
coefficients were allowed to vary within the range [0.2,2.0].

For this application, the following hypotheses were considered: the
array length was discretized in N = 100(\/2)-spaced steps by imposing
the number of elements M, equal to 25. Then, the structure of the
chromosome results

€ = A{wo,...,wk, ..., wN_1}]
bp=1k=0,...,N—1 (12)
M = 25
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The fitness coefficients were set as follows: k1 = 1 and ko = k3 = k4 =
0. The other IGA parameters (chosen according to the values suggested
in the related literature) turned out to be: population dimension,
J = 140; p. = 0.6; p,, = 0.6; gene mutation probability for boolean-
values, pp, = (1/6 - 1032 (i — 1) 4+ 0.06; gene mutation probability for
real-values, py,, = (7/10°)(i—1)40.03; maximum number of iterations,
I = 600. The MGbI was performed on R = 4 roulette-wheel selected
individuals (this value represents a good choice allowing an effective
trade-off between computational load and convergence rate).

The best result was an array with a side lobe peak ®y, =
—14.77dB. Let us consider that the threshold for side-lobes level
achieved in [4], which to the authors’ knowledge is the best in related
literature, was of —14.45dB (u,,; = 0.191 being the half-beamwidth).
Figure 3 compares the BP, the element weights and position layout of
such arrays.

On the other hand, taking into account also the main lobe width,
one of the best results was an array with a BP characterized by a side-
lobe peak @, = —14.67dB and a main-lobe width u,,; = 0.0204. In
this case, the algorithm was able to synthesize an array with side-lobes
level close to the optimal one (—14.67dB versus —14.77dB) with a
decrease in the main-lobe width (0.0190 versus 0.0204). As a comment,
it should be pointed out that, even though a sidelobe reduction of
about 0.2dB could be lower than the error amount in real phased
array, the achieved results are quite impressive due to the closeness to
the theoretical optimal value [4].

For the sake of completeness, in order to point out the achievable
trade-off between side-lobe peak and main-lobe width, a collection of
best results obtained after some runs of the proposed algorithm have
been reported in Fig. 4. For comparison purpose, the result reached
with the SA-based procedure is shown as well.

Finally, isophoric arrays [19] were considered as well. In this case
the array element weights were fixed (wy; k =0,...,N — 1) and the
optimization concerned the array element positions. Figure 5 shows the
BP and position layout in correspondence with best solutions, in term
of minimum side-lobe level peak (®g, = —13.06 dB and u,,; = 0.0170;
IGA (a)) as well as in term of optimal trade-off between side-lobe
level and main-lobe width (®4;, = —12.32dB and u,, = 0.0126; IGA
(b)), obtained by means of the IGA-based method. Also the features
of the array synthesized with the SA-based procedure are provided
(Pgp = —12.07dB and u,,; = 0.0133; SA [4]).
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4.2. Optimization of Array Layout and Weights — Beam
Pattern Shaping

In the second test case, the optimization of the number of sensors and
of the length of an array with a fixed BP shape was considered. The
desired pattern was the same as in [9,19] and described in Table 1.

T
—— Proposed Approach
— [4]

1477
-14.45

beam power pattern [dB]

Figure 3. Optimization of Element Weights — (a) BP with a side-lobe
peak of —14.77dB; (b) positions and weights of the array elements.
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Figure 4. Optimization of Element Weights — Peak side-lobe level

as a function of main-lobe width ([dB] units; - IGA simulation; O - SA
simulation).

Table 1. Beam pattern constraints [9, 20].

Range Beam Pattern Amplitude
O0<u<0.042 0dB
0.042<u<0.31 -13.4dB
0.31<u<0.45 -26.9dB
0.45<u<0.80 -13.4dB
0.80<u<1 0dB

As far as the IGA-based optimization procedure is concerned, the
fitness coefficients were heuristically chosen: k1 = 0, ko = 6.5, k3 =
4.3, and k4 = 2.8. The range of variation for array coefficients was
fixed to wy € [0.25,1.75] and I = 2000 iterations were performed
over a population of J = 200 individuals. The evolution strategy was
defined by choosing p. = 0.5, pgearn = 0.01, and ppirep = 0.003.

Figure 6 shows the BP of the best obtained array, in which
15 elements are located over a linear length equal to D = 16.5A
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Figure 5. Optimization of element positions and weights — Optimal
syntheses for isophoric arrays. (a) BPs; (b) array layouts.

(Fig. 6(b)). To the best of the authors’ knowledge, the most optimized
result for this test case was reported in [9], where the authors
synthesized an array with 16 elements and 19.5)\ in length. However,
the sharp reduction of the array aperture cause an increase of the

main-lobe width, which turns out to be greater than the one in [9]
(WY = 0.0249 versus u'5Y = 0.0228).
In order to give some indications about the iterative process,

Figure 7 shows the behavior of the fitness function, f(&;" t), versus
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Figure 7. Optimization of element layout and weights — Behaviour
of the fitness function versus the number of iterations.

the iteration number. For the sake of completeness, also single terms
of the fitness function are provided (fzp(€;" t), fn(E” t), fo(&” t))

4.3. Optimization of Array Layout — Thinning

The effectiveness of the IGA-based approach in array thinning was
further assessed in the third scenario. The array pattern was optimized
for the lowest maximum side-lobe level. A 200-elements isophoric array
with half-wavelength spacing was considered to compare the results
obtained by the proposed method with those presented in the literature
6, 7].

For this application, the chromosome structure was

E={M;bg,...,b,...,bn_1} wy=1k=0,...,N—1 (13)

and a suitable fitness function was considered by setting k1 = 2, ko =
ky = 0, k3 = 107°. The parameters of the maximization algorithm
were fixed as follows: I = 1000, J = 200, p. = 0.5, pgeatrn = 0.01 and
Doirtn = 0.003.
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Table 2. Statistical behavior of the number of active elements, side-
lobe peak and main-lobe width after some tens of process realizations.

Number of active elements (M)

Best Worst Average Std. Dev.
147 (73.5%) | 153 (76.5%) | 149.6 (74.8%) 1.0368
Side-Lobe Peak (dy,) [dB]

Best Worst Average Std. Dev.
-23.09 -22.59 -22.82 0.2312
Main-LobeWidth (u,,)
Best Worst Average Std. Dev.
0.0050 0.0052 0.00508 ~0
0 0{012 T T T
o | | |
2 I - o ]
W ffffffffffff e e e
) \"’w ””” mr\qp ”””” 1””ﬂ”f’%””23'°9
E_SO M Mq H l / M qﬁﬁ fﬂl{ Hﬂﬁ%ﬁf\gﬂﬂﬂjﬁp %*
i} M i | ‘ J “h | “ | u: ‘\‘ (L ‘ | N
L 1
0 025 0.75 1

U

Figure 8. Optimization of Element Layout — BP generated by using
M = 152 elements with side-lobe peak ®, = —23.09 dB.

Due to the stochastic nature of the proposed method, some
statistical parameters related to the collection of simulations were
evaluated. Table 2 gives the values of the best, worst, average
results and standard deviation values in terms of number of elements,
minimum side-lobe peak and main-lobe width. It is interesting to
observe that the filling percentage is always lower than the one achieved
in [6, 7] as well as the side-lobe peak value.

In conclusion, it should be pointed out that the removal of
symmetry constraints significantly performances (symmetrical arrays
are considered in [6,7]).
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Figure 9. Optimization of Element Weights — (a) Behavior of weight
coefficient values; (b) BP with side-lobe peak equal to —40.418 dB.
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4.4. Optimization of Array Weights — Side Lobes Level

In the last test case, the optimization of weight coefficients (whose
range was set to (0.05,1)) of M = 30(\/2)-spaced elements in order to
minimize the side-lobe peak of the resulting BP was addressed.

The IGA performed I = 1000 iterations with a fitness function
characterized by k1 = 0.11, ko = ks = k4 = 0.

The same problem has been investigated in [5] yielding a BP
with &4, = —36.02dB and u,,; = 0.0418. The array configuration
(Fig. 9(a)) — achieved with the IGA-based procedure — generated
the BP shown in Figure 9(b), characterized by a side-lobe peak
equal to —40.418dB and a main-lobe width equal to 0.0417. For
comparison purpose, the optimum Dolph-Chebyschev weighted array
yields u,,;; = 0.0413. Because of the negligible difference between these
values, it can be assumed that the proposed method attained the global
optimum of the fitness function.

Finally, the statistics given in Table 3 clearly point out the
robustness of the results despite the stochastic nature of the suggested
procedure. Many runnings of the proposed method (starting from
random initial populations) gave results very close to the optimal one.

Table 3. Statistical characterization of the side-lobe peak value
achieved after several process realizations.

Side-L obe Peak ( @y,) [dB]
Best Worst Average Std. Dev.
—-40.418dB | —40.168dB | —40.318dB 0.118dB

5. CONCLUSIONS

An optimization method for the synthesis of linear array pattern
functions has been proposed and assessed. Shaped beam pattern,
constrained side-lobes level, and main-lobe width are contemporarily
taken into account by maximizing a suitable cost function by means
of an innovative improved Genetic-Algorithm-based procedure. The
proposed approach offers a great flexibility and an easy insertion of the
a-priori knowledge within a low computational burden. Moreover, it
should be pointed out that several extensions of the proposed approach
could be also easily implemented without a significant increase of the
algorithm complexity.
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