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Abstract—The electromagnetic scattering from a 2D chiral circular
cylinders, illuminated by either a TEz or a TMz plane wave, is
investigated using an iterative scattering procedure. The developed
formulation and the implemented code simulate different types
of cylinders, where the cylinders can be made of anisotropic
chiral material with uniform or non-uniform chiral admittance
distribution, homogeneous isotropic dielectric material, perfectly
conducting material or a combination of all of them. The technique
applies the boundary conditions on the surface of each cylinder in an
iterative procedure in order to solve for the field expansion coefficients.
Numerical verifications are presented to prove the validity of the
formulation before presenting the scattering from an array of chiral
cylinders showing significant RCS reduction in forward or backward
directions based on the selection of the chirality parameter.
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1. INTRODUCTION

The interaction of electromagnetic fields with chiral matters has been
studied over the years. Chiral media were used in many applications
involving antennas and arrays, antenna radomes, microstrip substrates
and waveguides. A chiral object is, by definition, a body that lacks
bilateral symmetry, which means that it cannot be superimposed
on its mirror image neither by translation nor rotation. This can
also be known as handedness. Objects that have the property of
handedness are said to be either right-handed or left-handed. Chiral
media are optically active — a property caused by asymmetrical
molecular structure that enables a substance to rotate the plane of
incident polarized light, where the amount of rotation in the plane of
polarization is proportional to the thickness of the medium traversed
as well as to the light wavelength [1–5]. Thus chiral medium has an
effect on the attenuation rate of the right hand and left hand circularly
polarized waves. Unlike dielectric or conducting cylinders, chiral
scatterers produce both co-polarized and cross-polarized scattered
fields. Coating with chiral material is therefore attempted for reducing
radar cross-section of targets.

In this paper, an iterative solution to the problem of
electromagnetic scattering from an incident plane wave on M different
circular cylinders is derived. This solution is then used for presenting
simple configurations of chiral cylinders that can be used to enhance
or reduce the radar cross-section of two dimensional targets. The
cylinders are made of either lossy or lossless anisotropic chiral matters,
dielectric, conducting or a combination of all of them. The iterative
procedure starts by calculating the initial scattered field from each
cylinder due to the incident plane wave, where these fields are zero
order-scattered fields. After calculating the initial scattered fields,
interaction between the cylinders is to be considered assuming that
this interaction is due to mutual scattering among the cylinders. The
initial first order-scattered fields from M−1 cylinders are considered as
the incident field on the remaining cylinder inducing the second order
scattered fields from all M−1 cylinders after applying the appropriate
boundary conditions on the surface of each cylinder is applied in the
first order of interaction [6–8]. This iterative scattering procedure
between the cylinders yields, after infinite, theoretically, number of
interactions, the total scattered field that is the summation of all
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interactions. Numerical verifications are presented to prove the validity
of this developed formulation for chiral cylinders. New configurations
of an array of cylinders having a uniform chiralitys distribution is
considered to examine the chiralitys effect on the RCS reduction.

2. FORMULATION

Consider a number of parallel circular cylinders excited by an incident
plane wave as shown in Fig. 1. The cylinders are numbered from 1 to
M , while each cylinder defined by its radius, material type (conductor,
dielectric or chiral) and its center coordinate with respect to the global
cylindrical coordinates system (ρ, φ).
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Figure 1. Cross section of parallel circular cylinders with arbitrary
locations and radii.

Chiral medium is characterized by the following constitutive
relations for electromagnetic field with ejωt time-harmonic dependence
[9]

D = εE − jξcB (1)

H =
1
µ
B − jξcE. (2)

The chiral media has two different phase velocities for right-hand
circularly polarized waves (RCP) and left-hand circularly polarized
waves (LCP) leading to two different bulk wave numbers k+ and k−,
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which are given by

k± = k
[√

1 + x2 ± x
]

(3)

where k = ω
√
µε and chirality parameter x =

√
µ/εξc and ξc is the

chiral admittance [9].
Considering an E-polarized incident wave (TMz), the incident

electric field of a plane wave on cylinder “ i ” is expressed in the (ρi, φi)
cylindrical coordinates system as

Einc
z (ρi, φi) = E0e

jk0ρ′i cos(φ′
i−φ0)ejk0ρi cos(φi−φ0)

= E0e
jk0ρ′i cos(φ′

i−φ0)
∞∑

n=−∞
jnJn(k0ρi)ejn(φi−φ0) (4)

where k0 is the free space wave number, Jn(x) is the Bessel function
of the first kind and φ0 is the angle of incidence of the plane wave
with respect to the negative x-axis. This incident field expression is in
terms of the cylindrical coordinates of the ith whose center is located
at (ρ′i, φ

′
i) of the global coordinates (ρ, φ).

The corresponding φ component of the magnetic field is given by

H inc
φi (ρi, φi) =

E0

jη0
ejk0ρ′i cos(φ′

i−φ0)
∞∑

n=−∞
jnJ ′

n(k0ρi)ejn(φi−φ0). (5)

The resulting z component of the scattered electric field from the ith
cylinder and the transmitted z component of the field inside the chiral
material of this cylinder can be expressed, respectively, as

Es
zi(ρi, φi) = E0

∞∑
n=−∞

CinH
(2)
n (k0ρi)ejnφi (6)

Ec
zi(ρi, φi) = E0

∞∑
n=−∞

[AinJn(k+ρi) + BinJn(k−ρi)] ejnφi (7)

where Cin is the unknown expansion coefficients for the scattered field,
while Ain and Bin are the unknown expansion coefficients for the fields
inside the chiral cylinder. The Hankel functions of the second kind are
used here, to satisfy the radiation conditions at infinity. The field
components inside the cylinder are expressed in a Fourier series form
in terms of Bessel functions of the first kind, as the field is finite at
the origin of the cylinder. The corresponding φ components of the
magnetic fields are obtained as,

Hs
φi(ρi, φi) =

1
jη0k0

∂Es
z(ρi, φi)
∂ρi
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=
E0

jη0

∞∑
n=−∞

CinH
(2)′
n (k0ρi)ejnφi (8)

Hc
φi(ρi, φi) =

1
jηciki

∂Ec
z(ρi, φi)
∂ρi

=
E0

jηci

∞∑
n=−∞

[
AinJ

′
n(k+ρi) + BinJ

′
n(k−ρi)

]
ejnφi . (9)

Unlike nonchiral cylinders, the scattered and the internal fields will
contain TEz fields in addition to the TMz fields. The z component of
the scattered magnetic field and the transmitted z component inside
the chiral material of the ith cylinder can be expressed as [3],

Hs
zi(ρi, φi) = j

E0

η0

∞∑
n=−∞

DinH
(2)
n (k0ρi)ejnφi (10)

Hc
zi(ρi, φi) = j

E0

ηci

∞∑
n=−∞

[AinJn(k+ρi) −BinJn(k−ρi)] ejnφi (11)

while the corresponding φ components of the electric fields are obtained
as,

Es
φi(ρi, φi) =

E0

jη0k0

∂Hs
z (ρi, φi)
∂ρi

= E0

∞∑
n=−∞

DinH
(2)′
n (k0ρi)ejnφi (12)

Ec
φi(ρi, φi) =

E0

jηciki

∂Hc
z(ρi, φi)
∂ρi

= E0

∞∑
n=−∞

[
AinJ

′
n(k+ρi) −BinJ

′
n(k−ρi)

]
ejnφi . (13)

3. SOLUTION OF THE UNKNOWN COEFFICIENTS

The application of the boundary conditions on the surface of the ith
cylinder, which will enforce the tangential components of both electric
and magnetic fields to be continuous on the surface of the cylinder,
leads to

Einc
zi + Es

zi = Ec
zi at ρi = ai, 0 ≤ φi ≤ 2π (14)

H inc
φi + Hs

φi = Hc
φi at ρi = ai, 0 ≤ φi ≤ 2π (15)
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Hs
zi = Hc

zi at ρi = ai, 0 ≤ φi ≤ 2π (16)
Es

φi = Ec
φi at ρi = ai, 0 ≤ φi ≤ 2π (17)

where ai is the radius of the ith cylinder. Then the boundary condition
of the electric and magnetic fields for both the co and cross-polarized
fields respectively, can be written for the ith cylinder in the following
form,

E0e
jk0ρ′i cos(φ′

i−φ0)
∞∑

n=−∞
jnJn(k0ρi)ejn(φi−φ0)+E0

∞∑
n=−∞

C0
inH

(2)
n (k0ρi)ejnφi

= E0

∞∑
n=−∞

[
A0

inJn(k+ρi) + B0
inJn(k−ρi)

]
ejnφi (18)

E0

jη0
ejk0ρ′i cos(φ′

i−φ0)
∞∑

n=−∞
jnJ ′

n(k0ρi)ejn(φi−φ0)+
E0

jη0

∞∑
n=−∞

C0
inH

(2)′
n (k0ρi)ejnφi

=
E0

jηci

∞∑
n=−∞

[
A0

inJ
′
n(k+ρi) + B0

inJ
′
n(k−ρi)

]
ejnφi (19)

j
E0

η0

∞∑
n=−∞

D0
inH

(2)
n (k0ρi)ejnφi =j

E0

ηci

∞∑
n=−∞

[
A0

inJn(k+ρi)−B0
inJn(k−ρi)

]
ejnφi

(20)

E0

∞∑
n=−∞

D0
inH

(2)′
n (k0ρi)ejnφi =E0

∞∑
n=−∞

[
A0

inJ
′
n(k+ρi)−B0

inJ
′
n(k−ρi)

]
ejnφi .

(21)

Adding a superscript “0” to the unknown expansion coefficients C0
in,

D0
in, A0

in and B0
in is to indicate that for these four equations only

the scattering from the ith cylinder due to the incident wave is to
be considered and no interactions between the other M − 1 cylinders
are assumed. Where C0

in, D0
in are the initial unknown expansion

coefficients for the scattered field, while A0
in, B0

in are the initial
unknown expansion coefficients for the internal fields. After some
mathematical manipulations the expressions for the four unknown
coefficients C0

in, D0
in, A0

in and B0
in can be written as follow

C0
in =

[
V i

� J ′
�+−viV

i
� J�+

][
h′

�J�−−vih�J
′
�−

]
−

[
V i

� J ′
�−−viV

i
� J�−

][
vih�J

′
�+−h′

�J�+

][
h�J

′
�−−vih

′
�J�−

] [
vih�J

′
�+−h′

�J�+

]
−

[
h�J

′
�+−vih

′
�J�+

] [
h′

�J�−−vih�J
′
�−

]
(22)

D0
in =

[
V i

� J ′
�+−viV

i
� J�+

][
h�J

′
�−−vih

′
�J�−

]
−

[
V i

� J ′
�−−viV

i
� J�−

][
h�J

′
�+−vih

′
�J�+

][
h′

�J�− − vih�J
′
�−

][
h�J

′
�+−vih

′
�J�+

]
−

[
vih�J

′
�+−h′

�J�+

][
h�J

′
�−−vih

′
�J�−

]
(23)
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A0
in = viV

i
�

[ (
h′

� − h�

) (
vih�J

′
�− − h′

�J�−
)(

vih
′
�J�+−h�J

′
�+

)(
vih�J

′
�−−h′

�J�−
)
−
(
h′

�J�+−vih�J
′
�+

)(
vih

′
�J�−−h�J

′
�−

)
]

(24)

B0
in =viV

i
�

[ (
h′

� − h�

) (
h′

�J�+ − vih�J
′
�+

)(
vih

′
�J�−−h�J

′
�−

)(
h′

�J�+−vih�J
′
�+

)
−
(
vih�J

′
�−−h′

�J�−
)(

vih
′
�J�+−h�J

′
�+

)
]
.

(25)
where

V i
� = ejk0ρ′i cos(φ′

i−φ0)j�e−j�φ0 h� =
H

(2)
� (k0ai)
J�(k0ai)

J�+ =
J�(k+ai)
J�(k0ai)

J�− =
J�(k−ai)
J�(k0ai)

h′� =
H

(2)′

� (k0ai)
J ′

�(k0ai)

J ′
�+ =

J ′
�(k+ai)
J ′

�(k0ai)
J ′

�− =
J ′

�(k−ai)
J ′

�(k0ai)

vi =
ηci

η0
.

After evaluating the initial scattered field from all cylinders interaction
between the cylinders is considered assuming the interaction is due
to mutual scattering among the cylinders. For cylinder i, the initial
scattered fields from all other cylinders are to be considered as incident
fields on it.These incident fields will induce the first order scattered field
from cylinder i, and then the first order scattered fields from all other
cylinders will induce the second order scattered field from cylinder i.
This iterative scattering procedure between the cylinders yields, after
infinite number of interactions, the total scattered field that is the
summation of all interactions [6]. The incident copolarized fields on
cylinder “ i ” for the first order of interaction can be written as

Es
zi = E0

M∑
j=1
j �=i

∞∑
n=−∞

C0
jnH

(2)
n (k0ρj)ejnφj (26)

while the corresponding magnetic incident field can be written as

Hs
φi =

E0

jη0

M∑
j=1
j �=i

∞∑
n=−∞

C0
jnH

(2)′
n (k0ρj)ejnφj . (27)



94 Al Sharkawy, Elsherbeni, and Mahmoud

The incident cross polarized fields for the first order of interaction can
be written as

Hs
zi = j

E0

η0

M∑
j=1
j �=i

∞∑
n=−∞

D0
jnH

(2)
n (k0ρj)ejnφj (28)

while the corresponding electric incident field can be written as

Es
φi = E0

M∑
j=1
j �=i

∞∑
n=−∞

D0
jnH

(2)′
n (k0ρj)ejnφj (29)

where M is the total number of cylinders. Applying the boundary
conditions on the surface of the ith cylinder, we get

M∑
j=1
j �=i

∞∑
n=−∞

C0
jnH

(2)
n (k0ρj)ejnφj +

∞∑
n=−∞

C1
jnH

(2)
n (k0ρi)ejnφi

=
∞∑

n=−∞

[
A1

inJn(k+ρi) + B1
inJn(k−ρi)

]
ejnφi (30a)

M∑
j=1
j �=i

∞∑
n=−∞

C0
jnH

(2)′
n (k0ρj)ejnφj +

∞∑
n=−∞

C1
inH

(2)′
n (k0ρi)ejnφi

=
η0

ηci

∞∑
n=−∞

[
A1

inJ
′
n(k+ρi) + B1

inJ
′
n(k−ρi)

]
ejnφi (30b)

M∑
j=1
j �=i

∞∑
n=−∞

D0
jnH

(2)
n (k0ρj)ejnφj +

∞∑
n=−∞

D1
inH

(2)
n (k0ρi)ejnφi

=
η0

ηci

∞∑
n=−∞

[
A1

inJn(k+ρi) −B1
inJn(k−ρi)

]
ejnφi (30c)

M∑
j=1
j �=i

∞∑
n=−∞

D0
jnH

(2)′
n (k0ρj)ejnφj +

∞∑
n=−∞

D1
inH

(2)′
n (k0ρi)ejnφi

=
∞∑

n=−∞

[
A1

inJ
′
n(k+ρi) −B1

inJ
′
n(k−ρi)

]
ejnφi (30d)
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where the superscript “1” is the unknown expansion coefficients, which
refers to the first order of interaction. C1

in, D1
in, A1

in and B1
in cannot

be obtained directly from Equations (30), because the scattered field
from the other M − 1 cylinders are based on their local coordinates.
In this case the addition theorem for the Hankel function should be
used to transfer all the scattered fields to the local coordinates of the
ith cylinder. In general, the transformation from the gth coordinate
to the ith coordinate can be given as

H(2)
n (kρg) =

∞∑
m=−∞

Jm(k0ρi)H
(2)
m−n(k0dig)ej[mφi−(m−n)φig ] (31)

where dig and φig are given by

dig =
√
ρ2

i + ρ2
g − 2ρiρg cos(φi − φg) (32)

φig = tan−1

[
ρi sinφi − ρg sinφg

ρi cosφi − ρg cosφg

]
. (33)

After some mathematical manipulations the expressions for the four
unknown coefficients C1

i�, D
1
i�, A

1
i� and B1

i� can be written for the ith
cylinder as follow

C1
i� =




CI ×
M∑

g=1
g �=i

∞∑
n=−∞

C0
gnH

(2)
�−n(k0dig)e−j(�−n)φig

+DI ×
M∑

g=1
g �=i

∞∑
n=−∞

D0
gnH

(2)
�−n(k0dig)e−j(�−n)φig




XI
(34)

where

CI =




J�(k0ai)J ′
�(k+ai) − viJ

′
�(k0ai)J�(k+ai)

H
(2)′

� (k0ai)J�(k+ai) − viH
(2)
� (k0ai)J ′

�(k+ai)

− J�(k0ai)J ′
�(k−ai) − viJ

′
�(k0ai)J�(k−ai)

viH
(2)
� (k0ai)J ′

�(k−ai) −H
(2)′

� (k0ai)J�(k−ai)


 (35)

DI =




viJ�(k0ai)J ′
�(k+ai) − J ′

�(k0ai)J�(k+ai)

H
(2)′

� (k0ai)J�(k+ai) − viH
(2)
� (k0ai)J ′

�(k+ai)

− J ′
�(k0ai)J�(k−ai) − viJ�(k0ai)J ′

�(k−ai)
viH

(2)
� (k0ai)J ′

�(k−ai) −H
(2)′

� (k0ai)J�(k−ai)


 (36)
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XI =




viH
(2)′

� (k0ai)J�(k+ai) −H
(2)
� (k0ai)J ′

�(k+ai)

H
(2)′

� (k0ai)J�(k+ai) − viH
(2)
� (k0ai)J ′

�(k+ai)

−viH
(2)′

� (k0ai)J�(k−ai) −H
(2)
� (k0ai)J ′

�(k−ai)

viH
(2)
� (k0ai)J ′

�(k−ai) −H
(2)′

� (k0ai)J�(k−ai)




(37)

also

D1
i� =




CII ×
M∑

g=1
g �=i

∞∑
n=−∞

C0
gnH

(2)
�−n(k0dig)e−j(�−n)φig

+DII ×
M∑

g=1
g �=i

∞∑
n=−∞

D0
gnH

(2)
�−n(k0dig)e−j(�−n)φig




XII
(38)

where

CII =




J�(k0ai)J ′
�(k+ai) − viJ

′
�(k0ai)J�(k+ai)

viH
(2)′

� (k0ai)J�(k+ai) −H
(2)
� (k0ai)J ′

�(k+ai)

− J�(k0ai)J ′
�(k−ai) − viJ

′
�(k0ai)J�(k−ai)

viH
(2)′

� (k0ai)J�(k−ai) −H
(2)
� (k0ai)J ′

�(k−ai)


 (39)

DII =




viJ�(k0ai)J ′
�(k+ai) − J ′

�(k0ai)J�(k+ai)

viH
(2)′

� (k0ai)J�(k+ai) −H
(2)
� (k0ai)J ′

�(k+ai)

− J ′
�(k0ai)J�(k−ai) − viJ�(k0ai)J ′

�(k−ai)
viH

(2)′

� (k0ai)J�(k−ai) −H
(2)
� (k0ai)J ′

�(k−ai)


 (40)

XII =




H
(2)′

� (k0ai)J�(k+ai) − viH
(2)
� (k0ai)J ′

�(k+ai)

viH
(2)′

� (k0ai)J�(k+ai) −H
(2)
� (k0ai)J ′

�(k+ai)

−viH
(2)
� (k0ai)J ′

�(k−ai) −H
(2)′

� (k0ai)J�(k−ai)
viH

(2)′

� (k0ai)J�(k−ai) −H
(2)
� (k0ai)J ′

�(k−ai)


 (41)
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while A2
i� and B2

i� are given as

A1
i� =




CIII ×
M∑

g=1
g �=i

∞∑
n=−∞

C0
gnH

(2)
�−n(k0dig)e−j(�−n)φig

−DIII ×
M∑

g=1
g �=i

∞∑
n=−∞

D0
gnH

(2)
�−n(k0dig)e−j(�−n)φig




XIII
(42)

where

CIII =


vi

(
J�(k0ai)H

(2)′

� (k0ai) − J ′
�(k0ai)H

(2)
� (k0ai)

)
viH

(2)′

� (k0ai)J�(k−ai) −H
(2)
� (k0ai)J ′

�(k−ai)


 (43)

DIII =


vi

(
J�(k0ai)H

(2)′

� (k0ai) − J ′
�(k0ai)H

(2)
� (k0ai)

)
viH

(2)
� (k0ai)J ′

�(k−ai) −H
(2)′

� (k0ai)J�(k−ai)


 (44)

XIII =




viH
(2)′

� (k0ai)J�(k+ai) −H
(2)
� (k0ai)J ′

�(k+ai)

viH
(2)′

� (k0ai)J�(k−ai) −H
(2)
� (k0ai)J ′

�(k−ai)

−H
(2)′

� (k0ai)J�(k+ai) − viH
(2)
� (k0ai)J ′

�(k+ai)
viH

(2)
� (k0ai)J ′

�(k−ai) −H
(2)′

� (k0ai)J�(k−ai)


 (45)

while

B1
i� =




CIV ×
M∑

g=1
g �=i

∞∑
n=−∞

C0
gnH

(2)
�−n(k0dig)e−j(�−n)φig

−DIV ×
M∑

g=1
g �=i

∞∑
n=−∞

D0
gnH

(2)
�−n(k0dig)e−j(�−n)φig




XIV
(46)

where

CIV =


vi

(
J�(k0ai)H

(2)′

� (k0ai) − J ′
�(k0ai)H

(2)
� (k0ai)

)
viH

(2)′

� (k0ai)J�(k+ai) −H
(2)
� (k0ai)J ′

�(k+ai)


 (47)
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DIV =


vi

(
J�(k0ai)H

(2)′

� (k0ai) − J ′
�(k0ai)H

(2)
� (k0ai)

)
H

(2)′

� (k0ai)J�(k+ai) − viH
(2)
� (k0ai)J ′

�(k+ai)


 (48)

XIV =




viH
(2)′

� (k0ai)J�(k−ai) −H
(2)
� (k0ai)J ′

�(k−ai)

viH
(2)′

� (k0ai)J�(k+ai) −H
(2)
� (k0ai)J ′

�(k+ai)

−viH
(2)
� (k0ai)J ′

�(k−ai) −H
(2)′

� (k0ai)J�(k−ai)

H
(2)′

� (k0ai)J�(k+ai) − viH
(2)
� (k0ai)J ′

�(k+ai)



. (49)

After solving for the first order unknown coefficients C1
i�, D

1
i�, A

1
i� and

B1
i�, for all M cylinders we can continue on to find the coefficients of the

second order of interaction. A recurrence relation is developed, where
the coefficients in the pth interaction depends only on the coefficients
of the (p− 1)th interaction, i.e.,

M∑
g=1
g �=i

∞∑
n=−∞

Cp−1
gn J�(k0ai)H

(2)
�−n(k0dig)e−j(�−n)φig + Cp

i�H
(2)
� (k0ai)

= Ap
i�J�(k+ai) + Bp

i�J�(k−ai) (50)

M∑
g=1
g �=i

∞∑
n=−∞

Cp−1
gn J ′

�(k0ai)H
(2)
�−n(k0dig)e−j(�−n)φig + Cp

i�H
(2)′

� (k0ai)

=
1
vi

[
Ap

i�J
′
�(k+ai) + Bp

i�J
′
�(k−ai)

]
(51)

M∑
g=1
g �=i

∞∑
n=−∞

Dp−1
gn J�(k0ai)H

(2)
�−n(k0dig)e−j(�−n)φig + Dp

i�H
(2)
� (k0ai)

=
1
vi

[
Ap

i�J�(k+ai) −Bp
i�J�(k−ai)

]
(52)

M∑
g=1
g �=i

∞∑
n=−∞

Dp−1
gn J ′

�(k0ai)H
(2)
�−n(k0dig)e−j(�−n)φig + Dp

i�H
(2)′

� (k0ai)

= Ap
i�J

′
�(k+ai) −Bp

i�J
′
�(k−ai) (53)
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and thus the unknown expansion coefficients reduce to,

Cp
i� =




CI ×
M∑

g=1
g �=i

∞∑
n=−∞

Cp−1
gn H

(2)
�−n(k0dig)e−j(�−n)φig

+DI ×
M∑

g=1
g �=i

∞∑
n=−∞

Dp−1
gn H

(2)
�−n(k0dig)e−j(�−n)φig




XI
(54)

Dp
i� =




CII ×
M∑

g=1
g �=i

∞∑
n=−∞

Cp−1
gn H

(2)
�−n(k0dig)e−j(�−n)φig

+DII ×
M∑

g=1
g �=i

∞∑
n=−∞

Dp−1
gn H

(2)
�−n(k0dig)e−j(�−n)φig




XII
(55)

Ap
i� =




CIII ×
M∑

g=1
g �=i

∞∑
n=−∞

Cp−1
gn H

(2)
�−n(k0dig)e−j(�−n)φig

−DIII ×
M∑

g=1
g �=i

∞∑
n=−∞

Dp−1
gn H

(2)
�−n(k0dig)e−j(�−n)φig




XIII
(56)

Bp
i� =




CIV ×
M∑

g=1
g �=i

∞∑
n=−∞

Cp−1
gn H

(2)
�−n(k0dig)e−j(�−n)φig

−DIV ×
M∑

g=1
g �=i

∞∑
n=−∞

Dp−1
gn H

(2)
�−n(k0dig)e−j(�−n)φig




XIV
(57)

It is obvious that these coefficients depend on the previous interaction
scattering coefficients as well as on the physical parameters of the
cylinders as was noticed in [6] for conducting and dielectric cylinders.
For all cylinders, it is possible to write the scattering coefficients in a
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matrix form, such that

[Cp] = [TC]
[
Cp−1

]
+ [RC]

[
Dp−1

]
(58)

[Dp] = [TD]
[
Cp−1

]
+ [RD]

[
Dp−1

]
(59)

where the unknown coefficients C and D are presented in the following
matrix form

[Cp] =




[Cp
1 ]
·

[Cp
i ]
·

[Cp
M ]


 ,

[
Cp−1

]
=




[
Cp−1

1

]
·[

Cp−1
i

]
·[

Cp−1
M

]



,

[
Dp−1

]
=




[
Dp−1

1

]
·[

Dp−1
i

]
·[

Dp−1
M

]




(60)

[Dp] =




[Dp
1]
·

[Dp
i ]
·

[Dp
M ]


 ,

[
Cp−1

]
=




[
Cp−1

1

]
·[

Cp−1
i

]
·[

Cp−1
M

]



,

[
Dp−1

]
=




[
Dp−1

1

]
·[

Dp−1
i

]
·[

Dp−1
M

]




(61)

also all the four TC, RC, TD and RD matrices take the same form
which is,

[T ] =




[0] · [T1,j ] · [T1,M ]
[T2,1] · [T2,1] · [T2,M ]
· · · [Ti,j ] ·
· · · [0] ·

[TM,1] · [TM,j ] · [0]


 (62)

where

[Ti,j ] =




T 1,1
i,j · · · · · · T 1,n

i,j

· · · · · T �,n
i,j · ·

· · · · · · · ·
Tm,1

i,j · · · · · · Tm,n
i,j


 , with

i ∈ (1,M)
j ∈ (1,M)
m ∈ (1, 2Ni + 1)
n ∈ (1, 2Nj + 1)

(63)
and

TC�,n
i,j =

CI

XI
×H

(2)
�−n(k0dig)e−j(�−n)φig (64)
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RC�,n
i,j =

DI

XI
×H

(2)
�−n(k0dig)e−j(�−n)φig (65)

TD�,n
i,j =

CII

XII
×H

(2)
�−n(k0dig)e−j(�−n)φig (66)

RD�,n
i,j =

DII

XII
×H

(2)
�−n(k0dig)e−j(�−n)φig . (67)

Matrix [T ] is a square matrix with diagonal sub matrices [0] while
the sub matrices [Ti,j ] are not necessarily square matrices, especially if
the radii of the cylinders are not identical, if combination of different
cylinders is used, or if the parameters characterizing the cylinders is
different. The physical interpretation of the sub matrix [Ti,j ] is the
effect of cylinder j on cylinder i [6 ]. The unknown expansion coefficient
of the internal fields can also be written in a matrix form given by

[Ap] = [AC]
[
Cp−1

]
− [AD]

[
Dp−1

]
(68)

[Bp] = [BC]
[
Cp−1

]
− [BD]

[
Dp−1

]
(69)

where the unknown coefficients A and B are presented in the following
matrix form

[Ap] =




[Ap
1]
·

[Ap
i ]
·

[Ap
M ]


 ,

[
Cp−1

]
=




[
Cp−1

1

]
·[

Cp−1
i

]
·[

Cp−1
M

]



,

[
Dp−1

]
=




[
Dp−1

1

]
·[

Dp−1
i

]
·[

Dp−1
M

]




(70)

[Bp] =




[Bp
1 ]
·

[Bp
i ]
·

[Bp
M ]


 ,

[
Cp−1

]
=




[
Cp−1

1

]
·[

Cp−1
i

]
·[

Cp−1
M

]



,

[
Dp−1

]
=




[
Dp−1

1

]
·[

Dp−1
i

]
·[

Dp−1
M

]




(71)

also all the four AC, AD, BC and BD matrices take the same form
which is,

[R] =




[0] · [R1,j ] · [R1,M ]
[R2,1] · [R2,1] · [R2,M ]

· · · [Ri,j ] ·
· · · [0] ·

[RM,1] · [RM,j ] · [0]




(72)
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where

[Ri,j ] =




R1,1
i,j · · · · · · R1,n

i,j

· · · · · R�,n
i,j · ·

· · · · · · · ·
Rm,1

i,j · · · · · · Rm,n
i,j


 , with

i ∈ (1,M)
j ∈ (1,M)
m ∈ (1, 2Ni + 1)
n ∈ (1, 2Nj + 1)

(73)

AC�,n
i,j =

CIII

XIII
×H

(2)
�−n(k0dig)e−j(�−n)φig (74)

AD�,n
i,j =

DIII

XIII
×H

(2)
�−n(k0dig)e−j(�−n)φig (75)

BC�,n
i,j =

CIV

XIV
×H

(2)
�−n(k0dig)e−j(�−n)φig (76)

BD�,n
i,j =

DIV

XIV
×H

(2)
�−n(k0dig)e−j(�−n)φig . (77)

The total scattering and internal unknown expansion coefficients are
then given by,

Ctot
in =

N∑
p=0

Cp
in, Dtot

in =
N∑

p=0

Dp
in, Atot

in =
N∑

p=0

Ap
in, Btot

in =
N∑

p=0

Bp
in,

(78)
where N the total number of interaction. The cross and co polarized
field components of the total scattered electric field and the total
electric field inside the cylinder are given, respectively by

Es
zi(ρi, φi) = E0

M∑
i=1

∞∑
n=−∞

Ctot
in H(2)

n (k0ρi)ejnφi (79)

Ec
zi(ρi, φi) = E0

M∑
i=1

∞∑
n=−∞

[
Atot

in Jn(k+ρi) + Btot
in Jn(k−ρi)

]
ejnφi (80)

Es
φi(ρi, φi) = E0

M∑
i=1

∞∑
n=−∞

Dtot
in H(2)′

n (k0ρi)ejnφi (81)

Ec
φi(ρi, φi) = E0

M∑
i=1

∞∑
n=−∞

[
Atot

in J ′
n(k+ρi) −Btot

in J ′
n(k−ρi)

]
ejnφi . (82)

The well-known far field approximations can be applied to Equations
(79) and (81) in order to compute the far field patterns. As for the
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solution of the TEz case the only difference is to change the expression

of where it should take the following form vi = η0

ηci
=

√
1+χ2√
µr/εr

. One

should also note that the expressions of Hz and Eφ field components
in the TEz case correspond to the expressions of Ez and Hφ in the
TMz case, respectively, with E0 replaced by H0.

4. NUMERICAL RESULTS

Sample numerical data are presented to show the radiation patterns for
a number of conducting, dielectric and chiral cylinders. The scattering
cross section of five perfectly conducting cylinders due to a plane
wave incident at φ = 180◦ is shown in Fig. 2 for TMz polarized
waves,which is similar to a previously published result [10]. Each
cylinder radius is 0.1λ and their centers are separated by 0.5λ. For
the same configuration the scattering cross section of the dielectric
cylinders having relative permittivity equals to 2.2 can be shown in
Fig. 3. While that of chiral cylinders having εr = 2, µr = 3 and
ξc = 0.0005, is seen in Fig. 4. The main objective of these cases, for
simple collection of cylinders, is to show that the implemented code
not only present the scattered field from chiral cylinders, but also from
conducting and dielectric cylinders with different orientation.
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Figure 2. The bistatic scattering cross section of five perfectly
conducting cylinders each of radius = 0.1λ, and their centers are
separated by 0.5λ, due to a plane wave incident at φ0 = 180◦ compared
to Fig. 2(a) in [10].
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Figure 3. The bistatic scattering cross section of five dielectric
cylinders each of radius = 0.1λ, and εr = 2.2 and their centers are
separated by 0.5λ, due to a plane wave incident at φ0 = 180◦.
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Figure 4. The bistatic scattering cross section of five chiral cylinders
each of radius = 0.1λ, and εr = 2, µr = 3 and ξc = 0.0005 and
their centers are separated by 0.5λ, due to a plane wave incident at
φ0 = 180◦.
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The following features characterizes this iterative technique: (1)
No matrix inversion is required, (2) The matrices need to be computed
once through the entire procedure, and their symmetric feature speeds
up the computational time for its generation, (3) The main draw back
of this technique is the extra time needed between the iterations to
check for the accuracy of the applied boundary conditions in order to
terminate the iteration process.

5. RCS REDUCTION

It is observed that the RCS of a target can be drastically affected
by chirality but this effect is not predictable by a simple theory.
After several investigations for the effect of chirality on an array of
dielectric cylinders, we realized that by introducing certain values of
chiral admittance; either the backward or forward scattered fields can
be significantly reduced as will be shown in the following examples.

Figure 5 shows a comparison between the RCS (in dB) for an array
of five dielectric cylinders with the same array of cylinders but after
introducing the effect of the chirality, where the chiral admittance is

Figure 5. A comparison between the radiation pattern in dB for
an array of dielectric cylinders having εr = 5 and an array of chiral
cylinders of γ = 0.041.
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assigned the value of 0.041. The cylinders is excited by a TMz plane
wave incident at 180λ, the radius of each cylinder is 0.1λ (λ = 1 m) and
the cylinders are apart from each other by a distance 0.75λ from center
to center. The computed data shows that after introducing the value
of γ = 0.041 the backward scattered field was significantly reduced in
comparison with that of the dielectric cylinders.

r = 0.1 λ
d = 0.75 λ

inc
zE

It is clear from Table 1 that the value of the backward co-polarized
field has been significantly reduced from that of the dielectric cylinders
to that of the chiral cylinders by 30 dB, this is due to γ = 0.041. For the
same problem, another investigation was done concerning the value of
the chiral admittance and its effect on the RCS. It was noticed that by
assigning γ the value of 0.00745, a significant reduction in the forward
scattered field has occurred, which can be shown in Fig. 6.

It is clear from Table 2 that the value of the forward co-polarized
field has been significantly reduced from that of the dielectric cylinders
to that of the chiral cylinders by 24 dB, this is due to γ = 0.00745.

Table 1. Forward and backward scattered fields for the array of
dielectric and chiral cylinders in dB for γ = 0.041.

Dielectric
Co-Polarized Field

Chiral
Co-Polarized Field

Chiral
X-Polarized Field

Forward RCS 18.3 (dB) 11 (dB) -1.35 (dB)

Backward RCS 17 (dB) -20 (dB) -8 (dB)
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Figure 6. A comparison between the radiation pattern in dB for
an array of dielectric cylinders having εr = 5 and an array of chiral
cylinders of γ = 0.00475.

Table 2. Forward and backward scattered fields for the array of
dielectric and chiral cylinders in dB for γ = 0.00745.

Dielectric
Co-Polarized Field

Chiral
Co-Polarized Field

Chiral
X-Polarized Field

Forward RCS 18.3 (dB) -5 (dB) -9.5 (dB)

Backward RCS 17 (dB) 10 (dB) -12 (dB)

6. CONCLUSION

In this paper an iterative technique is presented to the problem of
scattering from a collection of parallel chiral cylinders. The cylinders
can be excited by either a TEz or a TMz plane wave. The main
advantage of this technique is that no matrix inversion is required and
the matrices are to be computed once through the entire procedure,
and their symmetric feature speeds up the computational time for its
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generation. However, one should point out that the main draw back
of this technique is the extra time needed between the iterations to
check for the accuracy of the applied boundary conditions in order
to terminate the iteration process. However, this process should not
be conducted at every iteration and definitely not on the surface of
all cylinders. Sample numerical results are presented to show the
validity of the formulation as well as some applications showing the
effect of assigning different values of the chiral admittance in reducing
the backward and forward scattered fields.
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