
Progress In Electromagnetics Research, PIER 44, 131–142, 2004

NUMERICAL ANALYSIS OF TWO DIMENSIONAL
TAPERED DIELECTRIC WAVEGUIDE

Asok De and G. V. Attimarad

Department of Electronics & Communication
Delhi College of Engineering
Bawana Road, DELHI-110 042, India

Abstract—A simple method is presented to obtain the scattering
parameters of the two dimensional tapered dielectric waveguide, by
discrete approximation to tapering, consisting of series of steps. The
two dimensional step discontinuity of the junction of two different
dielectric rectangular waveguides has been solved using integral
equation arising from the field matching of the discrete modes and the
continuous spectrum. Accurate numerical solution has been obtained
using Ritz-Galerkin variational approach with appropriate sets of
expanding functions. The results in the form of scattering parameters
for varying tapered length have been depicted graphically. Computed
results from generalized integral expressions are found to be in excellent
agreement with results obtained in two-dimensional case. With this
method it is possible to design the structure to enlarge the cross section
of a mode in a slow and controlled manner.
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1. INTRODUCTION

Discontinuities in dielectric waveguides play an important role
in designing components in millimeter, submillimeter and optical
circuitry. Quit often in these applications an open waveguide with
one particular cross-section must be joined to a waveguide of another
cross-section. The open waveguides to be connected differ sometimes
not only in size but also in their cross-sectional form. Usually these
waveguide connectors are required to launch as much as possible of the
power that is incident in one waveguide into the other waveguide.

In such waveguide transitions power may be lost to reflection
and radiation. The transition should be designed to keep radiation
reflection loss at a minimum. Transitions between different dielectric
wave guides in form of gradual waveguide tapers are particularly well
suited for open waveguides because of their microscopic dimensions.

For the problems with small discontinuities Marcuse [1]
approximated tapered dielectric waveguide by many infinitesimal step
junctions, then assumed that the modes of the adjacent waveguides are
approximately orthogonal. Miyanaga and Asakura [2] solved a linearly
tapered grating coupler on basis of the first order perturbation theory
of dividing the grating region in to short subsections.

For problems with large steps, Rozzi and In’tVeld [3, 4] solved
an integral equation by the Ritz-Galerkin method for one-dimensional
case. Asok De et al. [5] for two-dimensional case.

In this paper we have calculated scattering parameters for the
two-dimensional tapered dielectric by many steps junctions. For each
step junction scattering parameters [5] have been calculated and then
cascaded to find out the overall value along taper length. The validity
of the proposed method is examined by observing the convergence and
by comparing the tapering effect on two different size waveguide.

2. GENERALIZED SCATTERING MATRIX
TECHNIQUE

We consider first the abrupt transition between two dielectric
waveguides of wave impedances Z1 and Z2 Fig. 1. The refractive index
distribution for waveguide I (z ≤ 0) and II (z ≥ 0) is n1 and outside
the guide is n2. Here n2

1 = ε1 and n2
2 = ε2 are dielectric constants.

Fig. 1 shows the front view of the two dimensional dielectric waveguide
with dimensions 2d and 2d2 along x direction for waveguide I and II
respectively. The top view also looks like front view with dimensions
2d1 and 2d3 along y direction for waveguide I and II respectively. The
scattering matrix of this junction relates the forward and backward
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Figure 1. Front view of the two dimensional dielectric waveguide with
abrupt junction and step approximation to the taper.
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The transition matrix T ′
2 =
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0 ejφ2
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where φ2 = β2�, β2 is

propagation constant and between the dielectric waveguide steps length
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The total transmission matrix T̂ of the nonuniform dielectric waveguide
of Fig. 1 including the two abrupt transitions on both sides is then given
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by
T̂ = T32T

′
2T21 (4)

It provides us the relation[
V +

3

V −
3

]
= [T̂ ]

[
V +

1

V −
1

]
(5)

between the overall input and output wave amplitudes. A similar
procedure can be applied to calculate the transmission characteristics
of multisection dielectric waveguides, which consists of a series of
uniform waveguides with abrupt transition at the junctions. A typical
front view and top view of the taper Fig. 2, which involves gradual
change in the guide cross-section. A discrete approximation to this
shape is made consisting of a series of steps.

x y

z z

 L L
     

    Front view                                                    Top view
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Figure 2. The front view and top view of the two dimensional
dielectric waveguide with taper length L. The geometrical dimensions
are d/d2, d1/d3 equals to 0.111, ε1 = 5, ε2 = 1.

3. ANALYSIS OF DISCONTINUITY

3.1. Scattering Matrix Formulation (TE Case)

Using a field matching technique, which requires field description
on either side of the discontinuity in terms of modes, can solve the
diffraction problem at an abrupt discontinuity. The complete field
propagating in an open waveguide can be resolved into a finite set of
surface wave modes and a continuum of radiative modes [5]. In the
following we considered a two dimensional dielectric waveguide, excited
by transverse electric (TE) waves with the transverse field components
Ey and Hx.
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For a TE mode excitation with variation along the x-y direction
the field components are related as

Hx(x, y, z) =
1

jωµ

∂

∂z
Ey(x, y, z) =

β

ωµ
Ey(x, y, z) (6)

where ω, µ, β are angular frequency, permeability and propagation
constant respectively. Ey(x, y, z) may be expressed as a modal
expression

Ey =




∑
k

ak(x, y)ϕk(x, y)
∞∫
0

∞∫
0

b(kx, ky)φ(x, kx : y, ky)dkxdky


 ej(ωt−βz)

(7)
ak(x, y) and b(kx, ky) are unknown amplitudes of the surface ϕ(x, y)
and continuum φ(x, y) modes respectively. Let us consider a steady
state and source free problem, with two different semi-infinite two
dimensional waveguides forming a step discontinuity at z = 0 (Fig. 1).
The incident field considered here will be composed of surface waves
only. For now, let us assume that there are nj surface modes which are
capable of propagating in guide I (left), and nr surface modes which
can propagate in guide II (right), with the total number of propagating
surface waves given by

ni = nj + nr (8)

Continuity of electric field Ey(x, y, z) and the magnetic field Hx(x, y, z)
at z = 0 is expressed as

Ey(x, y, 0) =
nj∑

k=1

(
V i

k + V r
k

)
ϕk(x, y)

+
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0
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Since a scattering formulation is sought, the incident V i
k and reflected

V r
k surface wave amplitudes are made explicit where as V I(kx, ky)

and V II(kx, ky) represent the amplitudes of the (scattered) continuum
fields in guide I and II, respectively. By using orthogonality of the
modal amplitudes in Equation (10), one may express the unknown
modal amplitudes in terms of the magnetic field Hx(x, y, 0) as

V r
k = V i

k + skzk

∞∫
0

∞∫
0

ϕk(x, y)Hx(x, y, 0)dxdy (11)

V I(kx, ky) =
∞∫
0

∞∫
0

φI(x; kx, y; ky)z(kx, ky)Hx(x, y, 0)dxdy (12)

similarly for V II(kx, ky), where

sk = 1 for k < nj and sk = −1 for k > nj (13)

Upon substituting the above equations in to Equation (9) and re-
arranging, one obtains

nj∑
k=1

skV
i
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The summation on the left hand side of the Equation (14) represents
the total incident electric field impinging on either side of the
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discontinuity. The term Z(x, y, x′, y′) is a Green’s function which
may be viewed as an “impedance” of the step discontinuity, then the
scattered field due to magnetic field Hx(x′, y′) over entire range 0 to
infinity is given by the above formula. The linear relationship between
scattered (reflected and transmitted) and incident modal amplitudes
in Equation (11) suggests that we may obtain a scattering matrix
formulation of the form

V r = SV i (16)

Let first consider the case of single surface wave incident on the
discontinuity. Since the amplitude of the incident surface mode is
arbitrary, it is possible to set

V i
j = 1 V i

k �=j = 0

and Equation (16) reduce to

V r
k = Skj (17)

Let the corresponding scattered magnetic field be hj(x, y), then
according to Equation (11) we have

sjV
i
kϕj(x, y) =

∞∫
0

∞∫
0

Z(x, y, x′, y′)hj(x′, y′)dx′dy′ (18)

In the above equation, hj(x, y) is the unknown function to be
determined by discretization of Equation (18) by means of a Ritz-
Galerkin procedure. In this procedure an orthonormal basis functions
set (Cosine-Laguerre), [6] f(x, y) is introduced in the interval 0 <
x, y < ∞ and the magnetic field is represented as

hj(x, y) =
∞∑

n=0

wnjfn(x, y) (19)

By using the above Equation (19) in Equation (20) and testing latter
Equation, with the weight function fk(x, y), we obtain

sjV
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j
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Qkj =
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and of the vectors Qj =




Q1j

Q2j

·
·

Qnj
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w1j

w2j

·
·

wnj


 can be written in

matrix form as
wj = sjZ

−1Qj (22)

The scattering matrix is obtained from Equations (11), (14), (22) as

Skj = δkj + skzk

∞∫
0

∞∫
0

ϕk(x, y)
∞∑

n=0

wnjfn(x, y)dxdy

= δkj + sksjzkQ
T
k Z

−1Qj (23)

where δkj is the kronecker delta and QT
k denotes transposition of Qk

matrix.
The above equation specifies the scattering coefficient of the

incident jth surface mode to the kth surface mode. In the Ritz-Galarkin
approach, the infinite column matrices Qk and Qj and square matrix
Z are replaced by their finite truncations (0 < n < N).

By the careful choice of expanding functions, the oscillations in the
solution will decrease rapidly with increasing order and convergence is
quickly achieved. The step discontinuity is therefore represented by a
generalised (nj + nr) port scattering network.

However, the step discontinuity is a reciprocal junction and its
scattering matrix ought to be symmetrical. This will only be so if
all ports terminated by the same matching impedances and these are
all normalised to unity. Hence, the normalised scattering matrix is
introducing ideal transformers connected at ports. Such that

z = 1 = n2zk (24)

Giving the transformation ratio (25)

n =
1√
zk

(25)
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Table 1. Converged scattering parameters of tapered waveguide
shown in Figure 2, for different values of L/λ.

    λ
L    | S11 |     | S22 |

0 0.125 0.505
0.072 0.123 0.492
0.143 0.12 0.457
0.215 0.114 0.407
0.286 0.108 0.349
0.358 0.102 0.292
0.430 0.094 0.239
0.501 0.084 0.195
0.573 0.076 0.158
0.645 0.067 0.128

Where zk is the characteristic impedance of the kth surface mode.

Skj = δkj + sksj
√
zkzjQ

T
k Z

−1Qj (26)

which now displays the symmetry required by the reciprocity of the
junction.

Owing to the orthogonality of modes, the scattering formulation
between continuous modes and surface modes can be easily derived

Sj,k′
x,k′

y
= sks

′
k

√
zjz(k′x, k′y)Q

T
j Z

−1Q(k′x, k
′
y) (27)

4. NUMERICAL RESULTS

It is now interesting to observe the scattering behaviour of the taper.
In step analysis all above formulas are valid for the waveguide II with
dimensions d2 and d3 in x and y direction respectively. Table 1 shows
the converged values of |S11| and |S22| for different L/λ ratios with
λ = 2π. The numerically calculated scattering parameters are well
matching with the result calculated by Asok De et al. [5] for taper
length L = 0, indicating a two dimensional step with step ratio
d/d2 = d1/d3 = 0.111 (Fig. 3). Fig. 4 depicted variation of the
reflection coefficient for different tapered length. It is observed that as
the tapered length increases the reflection coefficient decreases agreeing
the well-known phenomenon of tapering in transmission line theory [7].
Fig. 5 shows the variation of |S11| for different L/λ ratios with different
λ values. If we observe the magnitude of the reflection coefficient is
less as the λ value increases along the tapered length.
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Figure 3. Scattering parameters |S11|, |S22|, |S12| for varying step
ratio d/d2 with d1/d3 = 0.000. The geometric dimensions are k0d2 =
1, k0d3 = 1, ε1 = 5, ε2 = 1, where k0 is free space wave number.
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Figure 4. Reflection coefficient of a tapered two-dimensional dielectric
waveguide versus L/λ with λ = 2π.
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Figure 5. Reflection coefficient of a tapered two-dimensional dielectric
waveguide versus L/λ.

5. CONCLUSION

In conclusion, a general analysis technique has been outlined for the
tapered two- dimensional dielectric waveguide by approximating the
series of steps. The key point is calculating the scattering parameters
at each junction, which involves a continuous, as well as a discrete
spectrum and then cascading. If we can avoid any mode conversion,
we might then be able to design the structure to enlarge cross section
of a particular mode in slow and controlled manner. The taper would
then acts as a beam expander, for use as a matching section between
two different dielectric guides.
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