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Abstract—A new variant of artificial high-impedance surfaces is
suggested and studied. This is a thin composite layer consisting of
a dielectric layer with a planar self-resonant grid from metal strips
on its surface. Every grid element is connected to the ground plane
with a metal pin. We use an analytical model which has been
recently developed for a similar structure. The advantages of the
new structure (decreasing the resonant frequency for fixed period and
thickness, further angular stabilization of surface impedance for the
TE-incidence of waves) are studied and explained. The analytical
model is compared with numerical simulations. It predicts quite well
the resonant frequencies of the artificial surface for different angles of
incidence however is not enough accurate for calculating the values of
the surface impedance.
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1. INTRODUCTION

In modern microwave techniques printed circuit antennas are widely
used. As a rule, these antennas are positioned on a surface of a
dielectric layer with a metal ground plane on the opposite side of the
slab. In practice, the thickness h of the metal-backed dielectric layer
must be very small compared to the wavelength λ in free space. When
h < λd/4, where λd = λ/

√
ε is the wavelength in the dielectric medium,

the electromagnetic interaction of the antenna current with the ground
plane is destructive and leads to practically significant decreasing of
the antenna radiation resistance. When the dielectric permittivity is
very high and h ≈ λd/4, the influence of the ground plane becomes
constructive. However, the zenithal radiation is still very small in
this case as compared with the same antenna in free space. It is
so because 60–70 percent of the antenna radiation is spent for the
excitation of lateral waves in the dielectric layer [1]. In 1998–1999
it was proposed to replace usual dielectric layers by high-impedance
surfaces (HIS) (e.g., [2]). A HIS operates as a magnetic wall when the
working frequency of the antenna lies within the HIS resonant band.
In this way one can dramatically improve the antenna efficiency (e.g.,
[2, 3], and [4]). However, it is not very easy to design an impenetrable
HIS satisfying practical requirements. To be practically suitable, the
substrate thickness must be small compared to λ and the resonant
bandwidth must not be very narrow to allow radiation of broadband
signals. Actually, it is very desirable to obtain the regime of a magnetic
wall for the whole spatial spectrum of the antenna radiation. In fact,
the HIS:S developed in cited works do not exhibit a uniform surface
impedance with respect to different spatial harmonics. The uniform
Zs depending on the frequency and independent on the incidence angle
θ would allow us to apply the impedance boundary conditions for the
whole radiation of an antenna positioned in the proximity of a HIS
(perhaps, separated from it with a very thin dielectric layer). However,
Zs calculated and measured in the cited works is a plane-wave surface
impedance which dramatically depends on the incidence angle θ. The
functions ZTEs (ω) and ZTMs (ω) corresponding to the two polarizations
of the incident wave (TE and TM, respectively) are different. In the
works [2] and [4] a very approximate analytical theory of the plane-wave
surface impedance has been developed for the case of the wave normal
incidence to the mushroom structure. The mushroom structure is a
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dense array of square or hexagonal patches on a surface of a dielectric
layer. Every patch is connected to the ground with a vertical metal
pin. The theory [4] was generalized to the case of oblique TE incidence
in our work [5]. In another work [6] we noticed that the presence of
vias (originally introduced in order to suppress the lateral TM waves
inside the mushroom structure [4]) helps to obtain a stable resonant
frequency for different θ for the case of the TM incidence. This is
the case, when the electric field vector of the incident wave contains a
component directed along the vias which excites the vertical current
in them. A possible explanation of this stabilization effect was given
in [6]: the array of grounded metal pins operates as a layer of the
so-called wire medium. Recently, we have shown in [7] that TM-
polarized incident waves excite two eigenwaves in wire media. One
is an extraordinary mode that has a stop-band at low frequencies. The
other is then the TEM mode. Since the period of the patch array is
very small compared to λd, the extraordinary wave decays very rapidly
along the vias, and we can assume that its influence is negligible. The
only important solution is the TEM wave. Its propagation factor has
two components: the normal to the interface component is equal to
the wave number of the dielectric host medium kd = ω

√
εε0µµ0, and

the tangential component equals that of the incident wave. The energy
propagates strictly along the vias with the propagation factor kd and,
therefore, the surface impedance of the mushroom structure turns out
to be independent on the incidence angle θ [6]. However, this is a very
approximate result since in our speculations we ignore the influence
of the evanescent mode. The measurements in [6] show that the
resonant frequency of Zs for the TM case of the wave incidence weakly
depends on θ (unlike the TE case when the vias are not excited and
the resonance of a mushroom structure dramatically shifts versus the
incidence angle). However, the shape of the curve Zs(ω) is still different
for different θ. One of the ideas suggested in [6] was to obtain a really
stable (with respect to θ) frequency dependence of Zs for the TM case.
Only this allows us to consider the surface impedance ZTMs (ω) as a
uniform parameter of the artificial surface for a broad spectrum of TM
spatial harmonics radiated by an antenna.

With this purpose we suggested in [6] a self-resonant grid instead a
grid of patches. Our expectations were the following: in the mushroom
structure [2] the grid of patches behaves as a screen which reduces the
influence of the array of vias. The self-resonant grid is made from
thin metal strips, and a large part of its surface is penetrable for
incident waves. Therefore, the array of vias is illuminated better by
the incident wave, which stabilizes the function ZTMs (ω) with respect
to the parameter θ more efficiently than in the case of a mushroom
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structure. So, in [6] we proposed to use planar spirals instead of square
patches. The experimental data confirmed that the structure behaves
as expected.

In the present paper we develop this new type of HIS. Instead
of a grid of patches, we propose a structure with a series-resonant
grid instead of a grid of patches which possesses two advantages with
respect to the mushroom structure: lower resonant frequency and
better angular stability for the TE-polarized incident waves.As well
as the structure suggested in our previous work [6], our new HIS
(from elements shown in Fig. 2) has ZTMs (ω) weakly depending on
θ. Additionally, the resonant frequency is lower than that of the
mushroom structure and than that of the structure suggested in [6].
This is an important advantage, since this property allows to decrease
the dimensions of the structure for a fixed resonant frequency. Also, our
new structure shows a certain stabilization of ZTEs (ω) with respect to
variations of θ (unlike the structure from [6]). The surface impedance
of the structure from [6] is also more stable (versus θ) for the TE-
incidence than that of the mushroom structure, however the structure
introduced in the present paper show further angular stabilization.
The three structures under comparison (top view) are shown in Fig. 3.

2. ANALYTICAL MODEL

2.1. General Formulae

Consider a planar array of conducting elements located on the surface
(z = 0) of a dielectric shield of thickness h. Let the structure be
illuminated by a plane wave. If the grid period D is small compared
to λd the tangential component of the electric field in the grid plane
averaged over the grid periods is simply proportional to the averaged
current induced in the grid [8]. The averaged current < J > is equal to
the jump of the tangential component of the averaged magnetic field
across the grid plane. Then we have

〈Et〉 (z = +0) = Zg 〈J〉 ≡ Zg (〈Ht〉 (z = +0) − 〈Ht〉 (z = −0)) . (1)

In (1) we assumed that the grid is practically isotropic in the horizontal
plane (x − y), i.e. there is no polarization transformation of the
averaged field with respect to the incident wave field. Then the grid
impedance Zg determined by (1) is a scalar value [8]. The surface
impedance is determined by the relation

〈Et〉 (z = +0) = Zs 〈Ht〉 (z = +0), (2)
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and in terms of the transmission-line approach it can be expressed as
a parallel connection of Zg and the surface impedance of the dielectric
shield Zd:

Zs =
ZgZd

Zg + Zd
. (3)

This transmission-line approach was successfully validated in our study
[5] for the case of a patch array on the shield surface. It was shown
that the error related with the approximate formula (3) is very small
for practically important cases. The resonance at which the structure
behaves as a magnetic wall corresponds to the case Xg(ω)+Xd(ω) = 0,
where Xs = Im(Zs), Xd = Im(Zd). Let us denote the solution of this
equation as ω = ω0. The dielectric shield (with or without vias) can be
considered as a shortened transmission line, and the surface impedance
Zd = Rd + jXd of a thin metal backed substrate (h < λd(ω0)/4) is
inductive. Therefore, we need to have a capacitive grid to form a HIS:
Zg = Rg − j|Xg|.

Let the substrate be periodically perforated by metal pins. In the
case of the TE-incidence Zd is not affected by the pins and we have
[5]:

ZTEd =
jη√

ε− sin2 θ
tan kzdh, (4)

where η =
√
µ0/ε0 is the wave impedance of free space and kzd =

ω
√
ε− sin2 θ

√
ε0µ0 is the vertical component of the wave vector of

the refracted wave. For the TM-case Zd can be considered as the
surface impedance of a thin layer of the wire medium. As we have
already noticed, at low frequencies the wire medium is practically a
TEM transmission line with the energy propagating strictly along z.
The surface impedance of this shortened line does not depend on the
incidence angle, and we obtain:

ZTMd =
jη√
ε

tan kdh, (5)

where kd = ω
√
εε0µ0.

The grid of perfectly conducting patches separated with thin slits
of width w from one another is positioned on the dielectric interface.
Denote its grid impedance as Zg = Zp. For Zp two explicit expressions
were obtained in [5]:

ZTEp =
η

2jα cos2 θ
(6)

for TE-incidence, and
ZTMp =

η

2jα
(7)
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for TM-incidence. Here we denote

α =
k′D
π

[
log

(
2D
πw

)
+

ζ(3)
2

(
k′D
2π

)2

+
3ζ(5)

23

(
k′D
2π

)4

+ . . .

]
,

where ζ is the Riemann zeta-function and k′ = ω
√
ε0µ0

√
(ε + 1)/2.

If |k′D| � 2π, the terms with ζ are negligible, the parameter α is
proportional to the frequency, and both relations (6) and (7) can be
represented in the form

Zp = rg +
1

jωCg
. (8)

In (8) the effective grid capacitance Cg depends on the angle of
incidence for the TE case and does not depend on that for the TM
case. If the dielectric losses are negligible (Im(ε) ≈ 0), the loss term
rg in (8) vanishes.

A self-resonant grid (see e.g., [9]) whose unit cell contains both
effective capacitance Cg and inductance Lg has the grid impedance (at
low frequencies in the case when the dielectric losses are negligible)
which can be presented in the form

Zg =
1

cos2 θ

(
jωLg +

1
jωCg

)
(9)

for the TE-case and in the form

Zg =

(
jωLg +

1
jωCg

)
(10)

for the TM-case. In both (9) and (10) it is assumed that Lg and Cg
do not depend on the incidence angle.

In the work [6] a grid of spiral-shaped metal elements was proposed
to substitute the patch array with the purpose to make the function
ZTMs (ω) be more stable with respect to the variations of the incidence
angle θ. This grid is shown in Fig. 1. The resonant frequency of the
structure containing a grid of spiral-shaped metal elements is rather
close to that of the mushroom structure. In our comparisons we
assumed that the main parameters of the two structure are same: the
period of the patch array and that of the array of spirals, the width of
the slit between two adjacent patches and that between two adjacent
spirals, the dielectric thickness h, the permittivity ε and the pin radius
ρ. From the comparison of (8) and (10) one can see that the equivalence
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Figure 1. A grid of spiral-shaped elements from [6]. Top view. Circles
at the patch centers show the connections of the vias.

of the resonant frequencies of the two HIS means the equivalence of
the grid impedances of the two structures:

1
jωCp

g
=

1
jωCsp

g
+ jωLspg , (11)

where the upper indices p and sp refer to the patches and spirals,
respectively. In fact, the spiral element has a smaller area than
the patch, and, therefore, Csp

g < Cp
g , however the deficiency of

the capacitance is compensated by the presence of inductance Lspg .
However, this compensation is only partial, and the resonant frequency
of the structure with a spiral array [6] turns out to be a bit higher than
that of the mushroom structure (patch array).

In the present work we suggest another variant of the spiral-shaped
element. Here our purpose is not only to stabilize ZTMs (ω) with respect
to the variations of θ but also to decrease the resonant frequency ω0

for fixed geometrical parameters of the structure.
Of course, a HIS whose resonant frequency is lower than that

of a mushroom structure is known. This is a structure with two
patch arrays located at two different levels and sandwiched with a
thin dielectric film [10]. However, the structure we suggest is simpler
and cheaper in fabrication, because there is only one dielectric layer
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in the structure, and only one planar grid on its surface. Notice, that
the multilevel mushroom structure from [10] possesses a very narrow
band due to its comparatively high effective grid capacitance and
small inductance. For the case of TE-incidence the resonant frequency
of mushroom structures is unstable with respect to θ, and it shifts
significantly to higher frequencies when θ grows. This shift is smaller
for the structure from [6], however our modification is once more stable
in this meaning.

The geometry of the new spiral element and the dimensions for
which we have made analytical calculations and numerical simulations
are shown in Fig. 2.

Pin

3.6 mm

3.6 mm0.3 mm

0.2 mm

0.3 mm

0.2 mm

0.2 mm

Figure 2. A spiral-shape element with loops. Geometrical
parameters. Circle in the center shows the connection of the via.

We compare the structure in which the grid of such elements is
positioned on the interface of the dielectric shield (the center of every
element is connected to the ground plane with a via) with two basic
HIS. The first one is the structure with spiral elements suggested in
[6]. The second one is the mushroom structure. In Fig. 3 we show
both these grids in comparison with the grid we suggest in the present
paper. The comparison of the three structures implies, of course, that
the main parameters are the same: the shield thickness h = 6.1 mm,
the permittivity ε = 2.17 − j0.02, the grid element size d = 3.6 mm,
the grid period D = 3.9 mm, the radius of vias ρ = 0.3 mm.

2.2. Calculation of L and C Parameters

Calculating Lg and Cg for the grid of spiral-shaped elements we neglect
the imaginary part of ε, since there is no adequate model which could
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Figure 3. The three objects of comparison (top view): a grid of spiral-
shaped elements with loops (left), a grid of patches (center), and a grid
of spiral-shaped elements without loops (right).

describe the influence of dielectric losses within the frame of the circuit
model of the grid unit cell. However, when we calculate Zd we take into
account the dielectric losses, and in this way we avoid infinite values
of Zs and obtain a non-zero real part of the surface impedance.

Consider the inductance of the spiral element which is equal to
Lg, assuming that the grid is illuminated by a normally incident wave.
Notice that for any polarization of the electric field four identical
portions of the spiral are excited identically, and the inductance of
the spiral element is equal to Lg = 4L1, where L1 is the inductance of
a one-quarter part of the whole element. We decompose this part of
the spiral element into 11 straight pieces as it is shown in Fig. 4. The
total inductance of the structure from pieces 1...11 is the sum of the
self-inductances of the straight strips and their mutual inductances:

L1 =
11∑
i=1

Li +
11∑
i�=j

Mij . (12)

Self-inductances for straight pieces i = 1 . . . 11 can be calculated
as follows [11]:

Li =
µ0li
2π

[
log

2li
w

+
1
2

]
, (13)

where w is the strip width and li is the piece length. Since the splits
between pieces 1 and 9 and 3 and 7 are rather small, we can consider
the system of two strips 3+7 (and the system of two strips 1+9) as a
whole straight strip with length l3 + l7 (and l1 + l9, respectively). The
mutual inductance of two orthogonal strips is negligible compared to
the mutual inductances of two parallel strips. The mutual inductances
of two parallel strips Mij were calculated with the formula (2-83) from
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Figure 4. Splitting one quarter of the spiral element into straight
portions. Arrows show the direction of the current induced by a
horizontal electric field.

[11]. This cumbersome formula can be simplified for the case when the
strip width w is small compared to the distance between the centers
of the strips:

Mij = ±µ0a

2π

[
log

2(1 +
√

1 + ξ2)
1 +

√
1 + 4ξ2

−
√

1 + ξ2 +
√

1 + 4ξ2

]
. (14)

The following notations have been introduced: ξ = Lij/2a, a =
(li + lj)/2 is the averaged length of two parallel pieces, and Lij is the
distance between their centers. The plus sign corresponds to the case
when the directions of the induced current in i−th and j−th pieces
are the opposite (and vice versa). Consider the case when the electric
field is directed horizontally as it is shown in Fig. 4. Then there is no
current in portion 10, and this strip does not contribute into L1. The
inductance L1 is equal approximately to 0.6Lloop, where Lloop is the
inductance of the loop formed by pieces 3, 4, 5, 6, and 7.

Capacitance Csp between two adjacent spiral-shaped elements can
be calculated starting with Sievenpiper’s formula for the capacitance
between two adjacent patches Cp [2]. We consider the spiral-shaped
element V as a hollow patch whose filling ratio is smaller than 1. The
filling ratio f is defined as the area of the metal surface of a spiral-
shaped element with sizes d× d divided by the area of a square patch
d2. Then we obtain:

Csp = fCp = f
d(ε + 1)ε0d

π
acosh

D

D − d
. (15)
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Figure 5. The surface reactance (solid) and resistance (dashed) of
the structure containing a grid of spiral-shaped elements with loops.
The normal incidence of the incident wave. Theory (thin lines) and
simulations (thick lines).

The result for Lg and Cg is to be substituted into (9) and (10) in
order to calculate Zg. Then, we substitute Zg together with formulae
(4) and (5) into (3) and obtain the result for Zs.

3. VALIDATION OF THE THEORY

In order to validate this approximate model we have made simulations
using the well-known HFSS code, version 8. To calculate Zs with the
HFSS code we applied two different approaches. First, we calculated
the amplitude of the reflected wave and expressed Zs through the
reflection coefficient R:

ZTEs = η cos θ
RTE + 1
RTE − 1

, ZTMs =
η

cos θ
RTM + 1
RTM − 1

. (16)

Second, we calculated the tangential components of the fields E and
H at the surface of the structure, made averaging, and found Zs as the
ratio 〈Et〉 / 〈Ht〉. Both approaches give practically the same result,
which allows to conclude that our numerical results are reliable.
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Figure 6. The surface reactance (solid) and resistance (dashed) of the
structure containing a grid of spiral-shaped elements with loops. TM-
incidence of the incident wave. Theory (thin lines) and simulations
(thick lines).

In Fig. 5 we present the results of the comparison between the
theory and simulations for a structure containing a grid of spiral-
shaped elements with loops on the interface of a metal-backed dielectric
layer with metal pins. Normal incidence of the exciting wave is
assumed. The parameters of the structure are given above. We
can conclude that our analytical model works reliably for this case.
According to our theory, the resonant frequency for Zs is equal to 4.64
GHz, whereas the simulations give the result 4.67 GHz.

In Figs. 6 and 7 we present a comparison between the theory and
numerical simulations for the TM-case and the TE-case. Both these
cases. correspond to θ = π/4. The analytical model still gives a rather
small error for the resonant frequency and for the resonant band, but
the values of the surface reactance Xs and resistance Rs are described
improperly. It is not surprising, becuase our model is quasi-static
in what concerns the response of the spiral-shaped element. As any
other circuit model, it does not take into account the electromagnetic
interaction of the grid elements. The capacitive coupling between the
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Figure 7. The surface reactance (solid) and resistance (dashed) of
the structure containing a grid of spiral-shaped elements with loops.
TE-incidence of the incident wave. Theory (thin lines) and simulations
(thick lines).

adjacent elements of the grid is taken into account, but the far-zone
interaction of the spiral-shaped elements is ignored. This is the main
shortcoming of our theory.

4. COMPARISON WITH OTHER STRUCTURES

To study the advantages of the new structure we compared the
numerical simulations of Zs for this new design with those for two
other objects (see Fig. 3). In Fig. 8 we present the comparison of the
surface impedance for two structures. The first structure (thick lines)
contains spiral-shaped elements with loops. The second structure (thin
lines) contains metal patches (see Fig. 3, on the bottom). The resonant
frequencies are 4.67 GHz (the first structure) and 4.93 GHz (the second
one). Our new structure allows to decrease the resonant frequency by
7 percents.

In Fig. 9 we present a similar comparison for the case of TM- and
TE-incidence, θ = π/4. Comparing Fig. 9 with Fig. 8 we can conclude
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Figure 8. The surface impedance of two structures under comparison
(HFSS simulations). Normal incidence. Thick lines: the structure
containing a grid of spiral-shaped elements with loops. Thin lines: the
mushroom structure.

that the frequency dependence of our structure is much more stable
with respect to variations of θ than that of the mushroom structure. In
Fig. 10 we compare our structure with its analogue from [6] (see Fig. 3,
on the top). The resonant frequencies are 4.67 (first structure) and
5.18 GHz (second one). So, the suggested modification of the structure
from [6] allows us to decrease the resonant frequency by 9 percents.
This is a result of a rather high grid inductance Lg due to the presence
of loops. The structure we suggest in the present paper possesses a
lower resonant frequency with respect to both mushroom structure
and structure with spiral elements which do not contain loops. Its
surface impedance demonstrates the same stability with respect to the
incidence angle as the structure from [6], and it is more stable for
the TM-incidence than for the mushroom structure. An unexpected
result was obtained for the TM-incidence. Comparing Fig. 7, TE-
incidence with Fig. 8, we can see that the resonant frequency of our new
structure shifts from 4.67 to 4.90 GHz when the angle θ varies from 0 to
π/4, whereas the resonant frequency of the mushroom structure shifts
from 4.93 to 5.46 GHz. For the structure from spiral-shaped elements
without loops which was suggested in [6] the resonant frequency shifts
from 5.2 to 5.6 GHz for the TE-case when θ is growing from 0 to π/4.
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Figure 9. The surface impedance of two structures under comparison
(HFSS simulations). TM- and TE-incidence. Thick lines: the structure
containing a grid of spiral-shaped elements with loops. Thin lines: the
mushroom structure.
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Figure 10. The surface impedance of two structures under
comparison. Normal incidence. Thick lines: the structure containing
a grid of spiral-shaped elements with loops. Thin lines: the structure
containing a grid of spiral-shaped particles without loops.

So, our new structure is also more stable with respect to the incidence
angle than two other structures for the TE-incidence. Our simple
analytical model does not allow to obtain and explain this result. We
suggest that this stabilization is related with the non-symmetry of the
spiral-shaped element, which is stressed by the presence of the loops.
This non-symmetry can lead to arising of some induced charge at the
center of the element excited by a horizontal external field. Then, a
vertical component of the electric field appears at the point to which
the via is connected, leading to its excitation. Therefore the vias play
their stabilizing role even for the TE-case.

5. CONCLUSION

In this paper, three different artificial impedance surfaces, based on
periodic arrays of planar metal strips on a dielectric slab backed by a
metal surface, are considered. All the elements are connected to the
ground metal plane (substrate) with via wires.



High-impedance surfaces with self-resonance grids 255

One of the HIS is the so called mushroom structure, which is well-
known. The second structure consist of an array of spiral elements
with a small central patch. This geometry was recently suggested in [6]
in order to stabilize the surface impedance with respect to variations
of the incident angle. Such stabilization has been confirmed in [6]
for the TM-polarization of incident plane waves. In the case of the
TE-polarization no such advantage was found for the array of spiral
elements. Furthermore, the resonant frequency of an array of spirals
elements [6] is higher than for the mushroom structure with the same
period and the slab thickness which is a disadvantage of such spiral
structures.

The third structure is suggested in the present paper. This
structure is composed of spiral elements with four square loops but
without a central patch. Thus, a further reduction of the area of the
metal surface is reached while the other parameters of the structure
are fixed. Comparison of the third variant with the first and the
second ones performed in this paper has shown that the spiral structure
suggested here allows us to reduce resonant frequency with respect to
the first and second structures for the fixed grid period and substrate
thickness. From the other side, this effect means that for a fixed
resonant frequency the period of the structure or the thickness of the
dielectric layer can be reduced, allowing to reduce the overall structure
thickness and weight.

For obliquely incident waves of both TM and TE-polarizations
we also obtain a reduction of the resonant frequency (in comparison
with two other structures), and a better stabilization of the frequency
dependence of Zs with respect to variations of the incident wave angle.
For example, for θ = 0 . . . π/4 we have obtained the resonant frequency
shift of −2.8 percent for TM-polarization and +4.9 percent for TE-
polarization. For the mushroom structure the corresponding resonant
frequency shifts are −4.5 and +10.4 percent, respectively. For the
structure with spiral elements without loops this frequency shift makes
+1 and +7 percent, respectively. Thus, we can conclude that the
structure we suggest in the present work is prospective for antenna
applications.
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