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Abstract—We consider oscillations in cylindrical slotted resonators
formed by combinations of rectangular domains with several slots
cut in the walls using the methods of approximate semi-inversion of
integral operator-valued functions with a logarithmic singularity of
the kernel. The initial boundary value problems for the Helmholtz
equation are reduced to Fredholm integral equations and systems of
integral equations of the first kind with a logarithmic singularity.
In the case of narrow slots, the dispersion equations are obtained
and evaluated using perturbations and the small-parameter method.
Eigenfrequencies and eigenfields are calculated explicitly. The values
of geometrical and material parameters are determined that lead to the
interaction of oscillations. The results obtained are used for improving
the design of filters and switches on the basis of simple model prototype
structures.
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1. INTRODUCTION

Cylindrical slotted resonators formed by combinations of rectangular
domains with several slots cut in the walls may serve as an excellent
prototype family that (i) exhibit a number of important features in-
herent to much more sophisticated structures and (ii) can be treated
using well-developed rigorous mathematical methods. On the other
hand, structures with inhomogeneities of very small relative dimensions
cannot be efficiently analyzed using purely numerical approach because
the characteristic size of the mesh becomes comparable with the
diameter of inclusion(s); in addition, a numerical method undergoes a
computational collapse in the vicinity of various critical points (CPs),
in particular, eigenfrequencies of the cavities formed by partial domains
and certain degeneration points (DPs), where the most interesting
phenomena are often observed [1, 2] that lead to restructuring of fields,
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etc. Among such phenomena, we note a resonance increase in the
amplitude of the diffracted fields reported in [3] and [4] for a family of
open slotted resonators with noncomact boundaries. The field dis-
tributions may become unstable with respect to parameters of the
structure (geometric, permittivity, etc.) and the intertype interaction
of oscillations [1] takes place when a geometric parameter is varied
in the vicinity of a DP, where one or several resonant frequencies
(eigenfrequencies) of the ‘partial’ resonators coupled by the aperture(s)
coincide [5, 9]. Such DPs can be determined independently for each
partial resonator (partial cross-sectional domain) and there are usually
a few of them in the chosen frequency range. The knowledge of
such points (in the given frequency range) and the character of the
corresponding field perturbations may be considered as a type of data
which can be used for the design of various devices, like filters and
switches. The first step here may be to accumulate and study a
sufficient amount of such data for a sufficiently rich family of prototype
structures.

In this paper, we consider cylindrical slotted cavities with narrow
slots and calculate eigenfrequencies, aperture fields, and field distribu-
tions in the cross-sectional domains (also in the form of segments of
asymptotic series in powers of a characteristic small parameter, the
relative slotwidth). We obtain explicit functional multi-parameter
dependences and evaluate them analytically to determine various
critical and extrema points that indicate an unstable behavior with
respect to a chosen parameter (e.g., the dimension of a partial domain).

We develop the theory of integral operator-valued functions
(OVFs) [7] defined on several intervals of integration and the methods
of analytical semi-inversion [8] and apply the techniques to a specific
family of closed cylindrical slotted resonators in order to calculate the
field distributions in various critical modes, to explain and describe
mathematically various instability phenomena, and to create the
models of some electromagnetic devices. Particularly, we extend the
method of approximate semi-inversion to the case of meromorphic
integral OVFs with a logarithmic singularity of the kernel defined on
several intervals of integration. In fact, general formulas of approxi-
mate inversion can be used when spectral parameter λ is sufficiently
distant from the singular points because, according to [7], there exists
a characteristic number (CN) (i.e., the point, at which the invertibility
of the OVF is violated) in a neighbourhood of a pole of the integral
OVF with a logarithmic singularity of the kernel. Below, we will take
into account the closeness to a simple first-order pole and modify the
inversion formulas for this case.

All geometric parameters are taken as relative (dimensionless)
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values normalized to the free-space wavelength.

2. SEMI-INVERSION OF INTEGRAL OPERATORS

2.1. Semi-Inversion of Meromorphic Integral OVFs: One
Interval of Integration

Consider the integral OVF with a logarithmic singularity of the kernel

K(λ)ϕ = αLϕ+N(λ)ϕ

≡
∫

Γ

[
α

1
π

ln
1

|t0 − t| +N(t0, t, λ)
]
ϕ(t)dt, t0 ∈ Γ,

(1)

where Γ = (a, b) = (d − w, d + w) and N(t0, t, λ) is once continuously
differentiable in Γ × Γ and a meromorphic function of λ, so that, in
the vicinity of a pole λν of N(t0, t, λ) OVF K(λ) can be represented
in the form

K(λ)ϕ = Kν(λ)ϕ+
mν

λν − λ
(ϕ,ϕν)ϕν , (2)

where the inner product

(ϕ,ϕν) =
∫

Γ
ϕ(t)ϕν(t)dt, (3)

mν is a constant, and ϕν is a given differentiable function. Note that
often ϕν is a member of a family of orthogonal basis functions used
in bilinear eigenfunction expansions of traces of the Green functions
(e.g., ϕν(t) = cos(wνt/a)).

OVFs K(λ) and Kν(λ) are Fredholm integral OVFs with a
logarithmic singularity of the kernel. Therefore, according to the
general theory of OVFs, they may have not more than a finite number
of CNs in every ball Br = {λ : |λ| < r} in the complex λ-plane and
are invertible at all (regular) points λ that differ from CNs. For every
r > 0 there exists [7] a sufficient w = w(r) such that the ball Br
contains only regular points λ of the OVF K(λ) (and Kν(λ)).

Set

β =
(

1
π

ln
1
w

)−1

(4)

and let β be a small parameter. Obtain approximate representations
for the inverse operators K(λ)−1 and Kν(λ)−1 as segments of asymp-
totic series in powers of β using the method of approximate semi-
inversion developed in [7].
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We will proceed from the approximate representation

K(λ) = L1(λ, β) + w2 lnwN(λ), (5)

obtained in [7], where

L1ϕ ≡ αLϕ+ g(ϕ, 1)1,

g = g(λ) =
α

β
+M0(λ) = const (α �= 0),

M0(λ) = N(d, d, λ),

(6)

and N(λ) is an integral OVF with the kernel N(t0, t, λ). Let us obtain
the inverse OVF L−1

1 (λ, β) explicitly. To this end, consider the integral
equation of the first kind

L1ϕ ≡ αLϕ+ g(ϕ, 1)1 = f, (7)

where the integral operator

Lϕ ≡ 1
π

∫ 1

−1
ln

1
|t0 − t|ϕ(t)dt (8)

and the inverse L−1 is defined according to [7]

L−1f ≡ − 1
π

∫ 1

−1

√
1− t20f

′(t0)dt0
(t0 − t)

√
1− t2

+
C√

1− t2
, (9)

with the constant

C =
1

ln 2

[
f(t0) +

1
π2

∫ 1

−1
ln

1
|t0 − t|dt

∫ 1

−1

√
1− τ2f ′(τ)dτ√
1− t2(τ − t)

]
. (10)

Note that the homogeneous integral equation

L1(λ)ϕ ≡ αLϕ+ g(λ)(ϕ, 1)1 = 0 (11)

where g(λ) is a (given) analytical or meromorphic function of complex
variable λ, constitutes the problem on CNs for the integral OVF L1(λ)
with a logarithmic singularity of the kernel. Applying L−1 to both
sides of the equation L1(λ)ϕ = f and using the formulas [7]

L−11 = p0(t) =
1

ln 2
1√

1− t2
, (L−11, 1) =

π

ln 2
, (12)
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we obtain an equivalent equation of the second kind

ϕ =
1
α

[
L−1f − g(ϕ, 1)L−11

]
. (13)

Multiplying both sides of (13) by the constant 1 and integrating over
(−1, 1), we obtain a (linear) equation with respect to (ϕ, 1)

[α+ g̃(λ)](ϕ, 1) = (L−1f, 1), g̃(λ) =
π

ln 2
g(λ). (14)

If α + g̃(λ) �= 0, then λ is a regular point of L1(λ) and equation (14)
and hence (7) are uniquely solvable for arbitrary f ∈ W̃ 1

2 , where W̃ 1
2

denotes the weighted Sobolev space defined in [5]. Dividing both sides
of (14) by α + g̃(λ) and substituting (ϕ, 1) into (13) we obtain the
expression for L−1

1 f :

ϕ = L−1
1 f =

1
α

[
L−1f +B0(L−1f, 1)ϕ0

]
, B0 = − ln 2

π

g̃

α+ g̃
. (15)

If α+ g̃(λ) = 0 at λ = λ∗, then this λ∗ is a CN of L1(λ); equations
(14) and (7) are not solvable; the homogeneous integral equation (11)
has a nontrivial solution (a characteristic element (eigenfunction) of
L1(λ)) ϕ∗(t) = C0p0(t), where C0 is an arbitrary constant. When
performing the semi-inversion we will assume that λ is a regular point
of L1(λ).

If β is sufficiently small, then B0 can be expanded in powers of
the small parameter β

B0 = −1 +
ln 2
π

β − ln 2
π

β2

(
ln 2
π

+
M0(λ)
α

)
+O(β3), (16)

which yields a similar expansion for L−1
1

L−1
1 (λ, β)f =

1
α
L−1f − ln 2

απ

(
1− β

ln 2
π

+ β2 ln 2
π

(
M0(λ)
α

+
ln 2
π

))
· (L−1f, 1)L−11 +O(β3).

(17)

Write the approximate representation [7] for Kν(λ)

Kν(λ) = L1(λ, β) + w2 lnwNν(λ), (18)

similar to (5). Here Nν(λ) coincides with OVF N(λ) in (1) minus the
singularity at λν . In the vicinity of λν , the approximate representation
[7] for the inverse K−1

ν (λ) is valid

K−1
ν (λ)f = L−1

1 f − w2 lnwL−1
1 NνL

−1
1 f +O(w4 ln2 w), as w → 0.

(19)
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2.2. Two Intervals of Integration: Approximate
Semi-Inversion of the Principal Part

When the set of integration in (1) consists of two intervals,

Γ =
2⋃
j=1

Γi, Γi = (dj − wj , dj + wj), j = 1, 2, (20)

we introduce the vector-functions f = (ϕ1, ϕ2)T and F = (f1, f2)T ,
where ϕi(x) ≡ ϕ(x), fi(t) ≡ f(t), x ∈ Γi and write the integral opera-
tor (1) in the matrix form

K =
(
K11 K12

K21 K22

)
, (21)

where

Kij(λ)ϕj = αLijϕj +Nij(λ)ϕj

≡
∫ dj+wj

dj−wj

[
α

π
ln

1
|x0 − x| +N(x0, x, λ)

]
ϕj(x)dx.

(22)

Using the change of variables

x = wjt+ dj , x0 = wit0 + di, i, j = 1, 2, (23)

we transform (22) to the equivalent form with the integration in each
operator Kij over (−1, 1):

K̃jj(λ)ϕj =
∫ 1

−1

[
α

π
ln

1
|t0 − t| +

α

π
ln

1
wj

+N(wit0 + di, wjt+ dj , λ)
]
ϕ̃j(t)dt, (24)

t0 ∈ (−1, 1), j = 1, 2;

K̃ij(λ)ϕj =
∫ 1

−1

[
α

π
ln

1
|wit0 − wjt+ (di − dj)|

+N(wit0 + di, wjt+ dj , λ)
]
ϕ̃j(t)dt, (25)

t0 ∈ Γi, i �= j, i, j = 1, 2.

Here ϕ̃j(t) = wjϕj(wjt+ dj), j = 1, 2.
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As follows from the estimate (1.128) in [7], when wj are taken
as small parameters, the diagonal operators K̃jj = K̃jj(λ,wj) can be
represented in the form

K̃jjϕ̃ = αLϕ̃+ α
1
π

ln
1
wj

(ϕ̃, 1)1+Mjj(λ)(ϕ̃, 1)1+w2
j lnwjlRjj(λ,wj)ϕ̃,

(26)

where Mjj = Mjj(λ) = N(dj , dj , λ); for the nondiagonal operators we
have

Kij(λ)ϕ̃ = Mij(ϕ̃, 1)1 + w2
j lnwjRij , i �= j, i, j = 1, 2, (27)

where

Mij = Mij(λ) =
α

π
ln

1
|di − dj |

+N(di, dj , λ), i �= j, i, j = 1, 2,

(28)

and Rij are integral OVFs holomorphic with respect to λ and uniformly
bounded as wj → 0, j = 1, 2.

Combining (26) and (27) we can separate the principal part LP
of the operator (1) in the matrix form

LP (λ) =
(

L1,1 M12(·, 1)
M21(·, 1) L2,1

)
, (29)

and write

LP (λ)f =
(
Lϕ1 + g1(ϕ1, 1)1 +M12(ϕ2, 1)1
Lϕ2 + g2(ϕ2, 1)1 +M21(ϕ1, 1)1

)
. (30)

where

gj = gj(λ, βj) =
α

βj
+Mjj,ν(λ), j = 1, 2. (31)

In order to obtain an explicit representation for the inverse L−1
P (λ)

we repeat componentwise the proof (7)–(15). Apply L−1 given by (9)
and (10) to both sides of every line in integral equation LP (λ)f = F
written in the form (30). As a result, we obtain an equivalent equation
of the second kind. Using formulas (12), we write this equation com-
ponentwise

ϕ1(t0) =
1
α

{
L−1f1 − [g1(ϕ1, 1) +M12(ϕ2, 1)]p0(t)

}
,

ϕ2(t0) =
1
α

{
L−1f2 − [M21(ϕ1, 1) + g2(ϕ2, 1)]p0(t)

}
.

(32)
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Denoting

g̃j =
π

ln 2
gj , M̃ij =

π

ln 2
Mij , i, j = 1, 2, (33)

and multiplying both sides of (32) by the constant 1 and integrating
over (−1, 1), we obtain a linear equation system with respect to (ϕ1, 1)
and (ϕ2, 1). The determinant of the system matrix

1
α

(
α+ g̃1 M̃12

M̃21 α+ g̃2

)
(34)

is

DP (λ) = (α+ g̃1)(α+ g̃2)− M̃12M̃21. (35)

Solving the system under the assumption DP (λ) �= 0 and substituting
the solution to (32) we obtain the componentwise expression for
L−1
P (λ)F with F = (f1, f2):

ϕ1(t0) ≡ L̃−1
1 F =

1
α

{
L−1f1 +

[
B11(L−1f1, 1) +B12(L−1f2, 1)

]
p0(t)

}
,

ϕ2(t0) ≡ L̃−1
2 F =

1
α

{
L−1f2 +

[
B21(L−1f1, 1) +B22(L−1f2, 1)

]
p0(t)

}
,

(36)

where the quantities Bij = Bij(λ) are defined using the matrix

B =
(
B11 B12

B21 B22

)
=

1
DP (λ)

(
M12M̃21 − g1(α+ g̃2) −αM12

−αM21 M21M̃12 − g2(α+ g̃1)

)
.

(37)

Introducing the diagonal matrix integral operator

L =
(
L 0
0 L

)
(38)

we write (36) in the vector notation and obtain the definition of the
inverse L−1

P (λ)

f = L−1
P (λ)F =

1
α

L−1F +
1
α
p0(t)B〈L−1F, 1〉, (39)
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where the vectors

L−1F =
(
L−1f1

L−1f2

)
, 〈L−1F, 1〉 =

(
(L−1f1, 1)
(L−1f2, 1)

)
. (40)

Write the integral OVF K(λ) in (1) with the the principal part
LP separated according to (22)–(29)

K(λ) = LP (λ) + qNp(λ), (41)

where the small parameter q = max
i=1,2

w2
i |lnwi|. Following [7], it is easy

to verify that at any fixed (regular) point λ = λ0 which does not
coincide with a pole of OVF K(λ), the inverse K−1(λ) exists and
admits the representation in the form of the Neumann series:

K−1(λ) =
∞∑
n=0

(−1)nqn(L−1
P N)nL−1

P , (42)

which converges in the operator norm uniformly with respect to λ and
q in the vicinity of λ0 and in the interval (0, q0) for a certain q0 > 0,
respectively. Indeed, at any regular points λ

K−1(λ) = (LP + qNP )−1 = (I + qL−1
P N)−1L−1

P , (43)

where ‖qL−1
P NP ‖ < 1 for sufficiently small q because ‖L−1

P NP ‖ is
uniformly bounded in the vicinity of λ0 and for q ∈ (0, q0). In applica-
tions, it is often sufficient to use only the first two terms of expansion
(42)

K−1(λ)f = L−1
P f − qL−1

P NL−1
P f +O(q2) as q → 0. (44)

2.3. Estimates for the Inner Product

For two-dimensional vector-functions f = (f1, f2)T and g = (g1, g2)T
we define the inner product associated with the set of two integration
intervals in (22), (24), and (25),

(f ,g) =
∫ 1

−1

 2∑
j=1

fj(t)gj(t)

 dt. (45)

Using formulas (12) we can express the inner products (L̃−1
i p, 1),

i = 1, 2, in (36) explicitly:

(L̃−1
i p, 1) =

1
α

π

ln 2

(
1 +

π

ln 2
Bi

)
, Bi = Bi1 +Bi2, i = 1, 2, (46)
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where p = (1, 1)T . Expanding Bi in powers of the small parameter βi
and retaining linear terms, we obtain, after some algebra, the expan-
sions for (L̃−1

i p, 1), i = 1, 2:

(L̃−1
i p, 1) =

βi
α

+O(β̂2), β̂ = β1 + β2, i = 1, 2. (47)

Let fi(t) be differentiable functions defined in a vicinity of t = di,
and wi be small parameters, i = 1, 2. Then

f(wit+ di) = ci +O(wi), ci = f(di), i = 1, 2, (48)

or, in the vector notation,

f(wit+ di) = c +O(w)p, w = max
i=1,2

wi, c = (c1, c2)T . (49)

Then, according to (46),

(L̃−1
i f , fi) = |ci|2(L̃−1

i p, 1) +O(w)

=
|ci|2
α

π

ln 2

(
1 +

π

ln 2
Bi

)
+O(w), i = 1, 2.

(50)

The expansions in powers of the small parameters βi, i = 1, 2, are,
respectively,

(L̃−1
i f , fi) =

|ci|2
α

βi +O(β̂2), i = 1, 2. (51)

Using the definition (26) of the diagonal operators K̃ii = K̃ii(λ,wi)
and formulas (42), (43), and (47), we obtain

(K̃−1
ii f , fi) = |ci|2(L̃−1

i p, 1) +O(w), i = 1, 2. (52)

so that their asymptotic expansions in powers of βi coincide with (51),

(K̃−1
ii f , fi) =

|ci|2
α

βi +O(β̂2), i = 1, 2. (53)

Then from (44) and the definition (45) it follows that

(K−1(λ)f , f) = (L−1
P f , f) +O(q) as q → 0, (54)

which yields

(K−1(λ)f , f) =
2∑
j=1

(L̃−1
j f , fj) +O(q) =

c0
α

π

ln 2

(
1 +

π

ln 2
B̂

)
+O(q),

(55)
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where

c0 = ‖c‖22 =
2∑
j=1

|cj |2, B̂ =
|c1|2B1 + |c2|2B2

c0
. (56)

Expanding Bi and then B̂ in powers of small parameters βi,
i = 1, 2, and retaining the first- and second-order terms involving βni ,
n = 0, 1, 2, i = 1, 2, and β1β2 and discarding the third-order terms
involving βni with n ≥ 3 and βk1β

m
2 with k +m ≥ 3, we obtain

(K−1(λ)f , f) ≡ Gf (λ)

=
1
α

(c1β1+c2β2)+
c0
α

( π

ln 2

)2
(d3β

2
1 +d4β

2
2 +d5β1β2)+O(q),

(57)

where dj = dj(λ), j = 3, 4, 5, are given in Appendix A.

Introducing the weighted small parameter β̃ =
|c1|2B1 + |c2|2B2

c0
and discarding in (57) all terms of the order higher than one, we obtain

(K−1(λ)f , f) =
c0
α
β̃ +O(β̃2). (58)

2.4. Approximate Determination of Characteristic Numbers

In this section we will use the approximate semi-inversion to reduce
the determination of CNs of logarithmic integral OVFs to functional
dispersion equations (DEs).

The case of one interval. Consider the local representation of the
integral equation K(λ)ϕ = f in the vicinity of the chosen pole λν
according to (2)

Kν(λ)ϕ+
mν

λν − λ
(ϕ,ϕν)ϕν = f. (59)

Applying the operator K−1
ν (λ) to both sides of (59), we obtain the

equivalent equation

ϕ+
mν

λν − λ
(ϕ,ϕν)K−1

ν (λ)ϕν = K−1
ν (λ)f. (60)

The solution to (60) is uniquely defined if (ϕ,ϕν) is uniquely defined.
Calculating the inner product of both sides of equation (60) with ϕν ,
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we obtain

(ϕ,ϕν) =
(λν − λ)(K−1

ν f, ϕν)
λν − λ+mν(K−1

ν ϕν , ϕν)
. (61)

Substituting expression (61) into (60), we obtain the local representa-
tion of the inverse K−1(λ) in the vicinity of the pole λν :

ϕ = K−1
ν (λ)f − mν(K−1

ν (λ)f, ϕν)
λν − λ+mν(K−1

NM (λ)ϕν , ϕν)
K−1
ν (λ)ϕν . (62)

Quantity (ϕ,ϕν) is uniquely defined for any f if and only if the
denominator of the fraction in (62) is not equal to zero. The zeros of
the denominator are the points at which the invertibility of K(λ) is
lost. Since the integral operator K(λ) is a Fredholm the holomorphic
OVF, these points are its CNs. Thus, CNs of K(λ) are the roots of
the equation

λ = λν +mν(K−1
ν (λ)ϕν , ϕν). (63)

Using (7)–(18) and (51)–(53), one can obtain the formula

(K−1
ν (λ)ϕν , ϕν) =

|cν |2
α

π

ln 2

(
1 +

π

ln 2
B0,ν

)
+O(w), (64)

and then the estimate

(K−1
ν (λ)ϕν , ϕν) = β

|cν |2
α

+O(β2), (65)

where Kν(λ) is defined in (2); B0,ν is given by (15) where M0 defined
by (7) should be replaced by the corresponding quantity M0,ν minus
the singularity at λν ,

M0,ν = M0,ν(λ) = N(d, d, λ)− mνcν
λν − λ

; (66)

and

ϕν(t) = cν +O(w), cν = ϕν(d), (67)

where w is a small parameter and ϕν(t) is a differentiable function in
the vicinity of t = d. When cν = 0, then the estimate

(K−1
ν (λ)ϕν , ϕν) = O(w) as w → 0, (68)

holds.
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Equation (63) can be written in the form

λ = Fν(λ), Fν(λ) ≡ λν +mν
|cν |2
α

π

ln 2

(
1 +

π

ln 2
B̂0,ν

)
. (69)

Expanding in powers of small parameters β we obtain

Fν(λ) = λν +mν
|cν |2
α

β +O(β2). (70)

Therefore Fν(λ) is a contraction mapping which yields the existence
of a root λ∗ν to the equation (63) λ = Fν(λ) in the vicinity of λν . This
root can be obtained as a segment of an asymptotic series in powers
of β directly from (69):

λ∗ν = λν + β
mν |cν |2

α
+ β2mν |cν |2

α

(
ln 2
π

+
M0,ν(λν)

α

)
+O(β3),

as β → 0,
(71)

when cν �= 0 is given by (67). This result is based on the estimate (65).
When cν = 0, the estimate (68) holds and

λ∗ν = λν +O(w), as w → 0. (72)

Since the roots of equation (63) are CNs of OVF K̃(λ), we have
proved that for sufficiently small w, there exists a CN of OVF K(λ)
which lies in the vicinity of the pole λν and is expressed by formulas
(71) or (72).

In addition to estimate (72), a more accurate formula for the CN
is obtained in [7] when cN = 0:

λ∗ν = λν − w2πmν |cν |2
2α

+O(w3) as w → 0.

For ϕν = cos
πN

b
t, we have

K−1
ν (λ)ϕν = K−1

ν (λ)1 +O(w2) = L−1
1 1 +O(w2)

=
1

α ln 2
1

1 +
π

ln 2

(
1
β

+
M0,ν(λ)

α

) 1√
1− t2

+O(w4 lnw)

as w → 0.
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For sufficiently small w,

(K−1
ν (λ)ϕν , ϕν) =

1
α
β

(
1− β

(
ln 2
π

+
Cν(λ)
α

))
+O(β3) as β → 0,

and the corresponding solution to equation (61) is

λ∗ν = λν + β
mν

α
+ β2mν

α

(
ln 2
π

+
M0,ν(λν)

α

)
+O(β3), as β → 0.

The case of n intervals. Consider the integral OVF

K(λ)ϕ = αLϕ+N(λ)ϕ

≡
∫

Γ

[
α

π
ln

1
|t0 − t| +N(t0, t, λ)

]
ϕ(t)dt (t0 ∈ Γ),

(73)

with

Γ =
n⋃
j=1

Γj ,

Γj = (aj , bj) = (dj − wj , dj + wj),
j = 1, 2, . . . , n, n ≥ 2,

(74)

where N(t0, t, λ) is once continuously differentiable in Γ × Γ and a
meromorphic function of λ. In the vicinity of a chosen pole λν
of N(λ; t0, t), OVF K(λ) can be written as a matrix operator and
represented componentwise with the inner product

(ϕj , ϕν)j =
∫

Γj

ϕj(t)ϕν(t)dt (j = 1, 2, . . . , n).

Introduce the column vector-function

f = (ϕ1, ϕ2, . . . , ϕn)T (75)

and the auxiliary n-dimensional vector-function

fν = ϕν(1, 1, . . . , 1)T , (76)

and define, as in (45), the inner product associated with the set of the
integration intervals

(f , fν) =
n∑
j=1

(ϕj , ϕν)j =
n∑
j=1

∫
Γj

ϕj(t)ϕν(t)dt. (77)
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Then OVF K(λ) written in the matrix form can be represented as

K(λ)f = Kν(λ)f +
mν

λν − λ
(f , fν)fν , (78)

where Kν(λ) is a matrix OVF with the entries Kij,ν(λ), i, j =
1, 2, . . . , n.

Use (78) and consider the local representation of the integral
equation Kν(λ)f = F in the vicinity of the chosen pole λν (similar
to (59))

K(λ)f = Kν(λ)f +
mν

λν − λ
(f , fν)fν = F, (79)

where the n-dimensional right-hand side F = (F1, F2, . . . , F3)T .
Applying the operator K−1

ν (λ) to both sides of (79), we obtain the
equivalent equation

f +
mν

λν − λ
(f , fν)K−1

ν (λ)fν = K−1
ν (λ)F. (80)

The solution to (80) is uniquely defined if the inner product (scalar
quantity) (f , fν) is uniquely defined. Calculating the inner product of
both sides of equation (80) with fν , we obtain

(f , fν) +
mν

λν − λ
(f , fν)(K−1

ν fν , fν) = (K−1
ν F, fν). (81)

Resolving (81) with respect to (f , fν) and substituting the result into
(80), we obtain the local representation of the inverse K−1(λ) in the
vicinity of the pole λν :

f = K−1
ν (λ)F− mν(K−1

ν (λ)F, fν)
λν − λ+mν(K−1

ν (λ)fν , fν)
K−1
ν (λ)fν . (82)

The quantity (f , fν) is uniquely defined for any F if and only if the
denominator of the fraction in (82) is not equal to zero. The zeros of the
denominator are the points at which K(λ) is not invertible. Since the
matrix integral operator K(λ) is a Fredholm and holomorphic OVF,
these points are its CNs. Thus, CNs of K(λ) are the roots of the
equation

λ = λν +mν(K−1
ν (λ)fν , fν). (83)

Thus the formula (83) for CNs in the case of several intervals
of integration coincides with the formula (63) obtained for the OVF
with one interval in which the inner product (77) is used. For
sufficiently small w, there exists a root λ∗ν of equation (83) which can
be obtained a segment of an asymptotic series in powers of β; the
resulting expressions are similar to (71) and (72) (when cν �= 0 and
when cν = 0).
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The case of two intervals. Consider the integral OVF (73) defined
on two intervals of integration (n = 2 in (74) given componentwise
by (22). In order to determine its CNs in the vicinity of poles
when the diameters of the integration intervals are small, we will use
representation (79) with a separated pole term.

Transform OVF (73) to the equivalent form with the integration
in each operator Kij (22) over (−1, 1). Introducing two-dimensional
vector-functions (75) and (76) and applying the procedure developed
above for the case of n intervals, we obtain the equation (83) for the
sought-for CNs of K(λ) in which the inner product is defined according
to (45). Using the asymptotic representation (55) we obtain, discarding
the terms of the order O(q),

(K−1
ν (λ)fν , fν) =

2∑
j=1

(L̃−1
j fν , ϕ(j)

ν ) = Gfν , (84)

where

Gfν =
|cν |2
α

π

ln 2

(
1 +

π

ln 2
B̂ν

)
. (85)

The expansion of Gfν in powers of small parameters βi (i = 1, 2) is
given by (57);

|cν |2 =
2∑
j=1

|cj,ν |2, cj,ν = ϕ(j)
ν (0), j = 1, 2; (86)

ϕ
(j)
ν (t) = wjϕν(wjt + dj), j = 1, 2; and fν = (ϕ(1)

ν , ϕ
(2)
ν )T . Equation

(83) takes the form

λ = Fν(λ) (87)

with

Fν(λ) ≡ λν +mνGfν . (88)

Here

B̂ν =
c1,νB1,ν + c2,νB2,ν

|cν |2
, (89)

Bj,ν are given by (28), (33), (35), (37), and (56), where Mij defined by
(28) should be replaced by the corresponding quantities Mij,ν minus
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the singularity at λν :

Mij,ν = Mij,ν(λ) =
α

π
ln

1
|di − dj |

+N(di, dj , λ)− mνci,ν
λν − λ

, (90)

i �= j, i, j = 1, 2,

Mii,ν = Mii,ν(λ) = N(di, di, λ)− mνci,ν
λν − λ

, i = 1, 2. (91)

Expanding in powers of small parameters βi and retaining the
first- and second-order terms involving βni , n = 0, 1, 2, i = 1, 2, and
β1β2 and discarding the third-order terms involving βni with n ≥ 3 and
βk1β

m
2 with k + m ≥ 3, we obtain the expansion of Fν(λ) in powers of

small parameters βi (57), which yields

Fν(λ) = λν +
mν

α
β̃ +O(β̃2), β̃ =

∑2
j=1|cj,ν |2βj
|cν |2

. (92)

It is easy to see that Fν(λ) is a contraction mapping. Indeed,
according to formulas (28), (33), (35), (37), (89), and (90) that consti-
tute the explicit definitions of all quantities contained in the expression
for Fν(λ) there exists an r > 0 such that Fν(λ) is a differentiable
function in a ball Br = {λ : |λ− λν | < r}, and the derivative

dFν(λ)
dλ

= O(β̂2), (93)

so that the inequality ∣∣∣∣dFν(λ)
dλ

∣∣∣∣ � A < 1 (94)

holds uniformly for sufficiently small β̂ in the ball Br. Therefore, there
exists a root λν = λ∗ν of equation (92) in the vicinity of λν . This root
is an approximation to CN of OVF (73).

Substituting into (87), in which the left-hand side is replaced by
λ∗ν and the right-hand side, by (88), where Gfν is expanded using (57)
with Mii,ν = Mii,ν(λ) replaced by their values M̂ii,ν = Mii,ν(λν) at
λ = λν , we obtain the expansion of the root λ∗ν in powers of small
parameters βi (i = 1, 2) containing all second-order terms (if we take
into account that λ − λν = O(β̂) according to (87), (88), and (92)).
The resulting formula is similar to the corresponding expansion (71)
obtained in the case of one interval of integration.



Oscillations in slotted resonators 211

3. RECTANGULAR SLOTTED CAVITIES

In this section, we will study model problems of finding eigenfrequen-
cies and eigenfields of a family of rectangular slotted cavities using the
methods developed above.

3.1. Rectangular Cavity with One Slot

The cross section of this cavity by the plane x3 = 0 (in the Cartesian
coordinate system (x1, x2, x3)) is formed by two rectangular domains

Ω1 = {r = (x1, x2) : 0 < x1 < a1; 0 < x2 < b1},
Ω2 = {r = (x1, x2) : 0 < x1 < a2; −b2 < x2 < 0},

with the common part of the boundary ∂Ω1 ∩ ∂Ω2 = {r : x2 = 0, 0 �
x1 � min(a1, a2)}, containing the interval Γ = {r : x2 = 0, d − w <
x1 < d+w} (a slot). The permittivity ε = εi(r), i = 1, 2; r ∈ Ωi. This
geometry (see Fig. 2) corresponds to a slotted cavity with one slot.
The squared eigenfrequencies (SEs) are eigenvalues of the boundary
eigenvalue problem formulated as follows: It is necessary to determine
the values of parameter λ for which there exist nontrivial solutions to
the homogeneous Helmholtz equation

∆u(r) + λεu(r) = 0, r ∈ Ω = Ω1 ∪ Ω2, (95)

satisfying the homogeneous boundary condition

∂u

∂x2
= 0 (96)

on (∂Ω1 \ Γ) ∪ (∂Ω2 \ Γ), the conjugation conditions

[u1 − u2]
∣∣
Γ

= 0, ui = ui(r), r ∈ Ωi, i = 1, 2, (97)[
1
ε1

∂u1

∂x2
− 1
ε2

∂u2

∂x2

] ∣∣∣∣∣
Γ

= 0, (98)

and the Meixner condition∫∫
Sρ

(
|u|2 +

∣∣∣∣ ∂u∂x1

∣∣∣∣2 +
∣∣∣∣ ∂u∂x2

∣∣∣∣2
)
dr <∞; (99)

here Sρ denotes the vicinities of the boundary edges and u is the
longitudinal component H3 of the magnetic field intensity vector H.



212 Shesopalov, Okuno, and Kotik

The Fredholm property and existence of generalized and classical
solutions to the corresponding inhomogeneous problem is proved in
[5]. Therefore, there may exist only isolated eigenvalues of the problem
(95)–(99). According to [5], this problem has a real eigenvalue between
every two neighbouring points µ(i)

nm = π2

εi

(
n2

a2i
+ m2

b2i

)
, n,m = 0, 1, . . . ,

i = 1, 2. These eigenvalues coincide with CNs of the integral OVF
K(λ) that enters the (operator) equation K(λ)φ = 0, to which this
problem is reduced below.

Introduce Green’s functions of the second boundary value problem
for the Helmholtz equation in rectangles Ωi, i = 1, 2:

Gi(λ; r, q) =
4
aibi

∞∑
n=0

∞∑
m=0

δnδm
ψn(x1, ai)ψn(x0

1, ai)ψm(x2, bi)ψm(x0
2, bi)

µ
(i)
nm − λ

,

δn =
{

1/2, n = 0,
1, n � 1, ψn(t, a) = cos

πnt

a
, r = (x1, x2), q = (x0

1, x
0
2),

µ(i)
nm =

µ̃
(i)
nm

εi
, µ̃(i)

nm = π2

(
n2

a2
i

+
m2

b2i

)
, i = 1, 2, (100)

where µ̃
(i)
nm are eigenvalues of the second boundary value problem for

the Laplace operator in rectangle Ωi. Green’s function Gi(λ; r, q) is
meromorphic with the set of poles

M
i = {µ(i)

nm}∞n,m=0, i = 1, 2. (101)

Representing the solution in the form of Green’s potentials, one
can reduce the problem (95)–(99) to a homogeneous integral equation
with a logarithmic singularity of the kernel [6, 5]

K(λ)ϕ = αLϕ+N(λ)ϕ

≡
∫

Γ

[
α

1
π

ln
1

|t0 − t| +N(t0, t, λ)
]
ϕ(t)dt = 0, t0 = Γ, (102)

where α = ε1 + ε2 and the OVF K(λ) is as in (73) with

N(t0, t, λ) = N1(t0, t, λ) + g(t0, t),

g(t0, t) = −
2∑
i=1

εi
π

[
ln

π

ai
+ln

2ai
π

∣∣∣∣∣2 sin π
2ai

(t−t0)
t−t0

∣∣∣∣∣+ln
∣∣∣∣2 sin

π(t+t0)
2ai

∣∣∣∣
]
,
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N1(t0, t, λ) =
2∑
i=1

(
γ

(i)
0 (λ) +

∞∑
n=1

(
γ(i)
n (λ)− 2εi

πn

)
ψ(i)
n (t0)ψ(i)

n (t)

)
,

γ
(i)
0 (λ) =

1
ai
f(λqi), γ(i)

n (λ) =
2
ai
εibif(qi(n2ri − λ)),

qi = εib
2
i , ri =

π2

εia2
i

, i = 1, 2,

f(z) =


coth

√
z√

z
z > 0,

−cot
√
−z√
−z z < 0,

ψ(i)
n (x) = cos

πnx

ai
.

The asymptotic representation

γ(i)
n (λ)− 2εi

πn
=

2εi
πn3

+O(n−5), i = 1, 2, (103)

which holds uniformly for sufficiently large n in every closed domain
that does not contain poles, enables one to prove that K(λ) is a
meromorphic function of λ with the set of poles M1 ∪M2.

The SEs of the slotted resonator under study are CNs of K(λ) in
(102), and the latter are the roots of the transcendental DE λ = Fν(λ)
given by (69). In this case (one interval of integration) the right-hand
side of (69) written for a chosen pole λν = µ

(i0)
NM ∈ M

i0
0 (for a fixed

triple N,M, i0: N,M = 0, 1, 2, . . . , i0 = 1, 2), takes the form

Fν(λ) ≡ λν +
4

ai0bi0
cos2

πNd

ai0

β

α+ βα ln 2
π + βM0,ν

,

β =
(

1
π

ln
1
w

)−1

,

(104)

where M0,ν(λ) is given in Appendix A. In the case of a narrow
slot, a root λ∗ν of (104) determined in the vicinity of a chosen pole
λν = µν = µ

(i0)
NM , gives an approximate value of a SE which is actually

the perturbed SE µ
(i0)
NM of the H

(i0)
NM -oscillation of the (partial) cavity

Ωi0 (N,M = 0, 1, 2, . . . , i0 = 1, 2). This perturbation, which is caused
by the presence of a narrow slot, is regular because λν → µν as the
diameter of the slot tends to zero (w → 0 and β → 0).
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3.2. Rectangular Cavity with Two Slots in One Wall

The cross section of this cavity by the plane x3 = 0 is formed by
two rectangular domains Ω1 and Ω2 described above with the common
part of the boundary ∂Ω1 ∩ ∂Ω2 = {r : x2 = 0, 0 � x1 � min(a1, a2)},
containing two intervals (slots)

Γ =
2⋃
j=1

Γi, Γi = (dj − wj , dj + wj), j = 1, 2. (105)

The permittivity ε = εi(r), i = 1, 2; r ∈ Ωi. The problem is re-
duced [5] to the homogeneous integral equation (102) with two inter-
vals of integration Γ. Using the change of variables t = wjx + dj ,
t0 = wix0 + di, i, j = 1, 2, we transform (102) to the equivalent form
with the integration over (−1, 1). The smooth part N(t0, t, λ) of the
kernel of the resulting OVF can be represented as

N(wix0 + di, wjx+ dj , λ) = N (ij)(x0, x,λ)

=
2∑
p=1

εp

{
2

apbp
D

(p)
0 (λ) +

4
apbp

∞∑
n=1

D(p)
n (λ)ϕ(p,i)

n (x0)ϕ(p,j)
n (x)

+
2
π

∞∑
n=1

Q(i)
n ϕ(p,i)

n (x0)ϕ(p,j)
n (x)

− 1
π

ln

∣∣∣∣∣∣∣
2 sin

π

2ap
[(wjx+ dj)− (wix0 + di)]

π

2ap
[(wjx+ dj)− (wix0 + di)]

∣∣∣∣∣∣∣
− 1
π

ln
∣∣∣∣2 sin

π

2ap
[(wjx+ dj) + (wix+ di)]

∣∣∣∣
}
, (106)

where

ϕ(p,j)
n (x) = cos

πn(wjx+ dj)
ap

, i, j, p = 1, 2. (107)

and quantities D(p)
n and Q

(i)
n are specified in Appendix A.

In this case (two intervals of integration), the right-hand side of
the transcendental equation of the method in (69) written for a chosen
pole λν = µ

(i0)
NM ∈M

i0
0 (for a fixed triple N,M, i0: N,M = 0, 1, 2, . . . ,

i0 = 1, 2), takes the form

λ = Fν(λ), Fν(λ) ≡ λν +mνGfν , mν =
4εi0bi0
ai0

. (108)
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Here Gfν is introduced in (85) with B̂ν and Bj,ν given by (28), (33),
(35), (37), and (89), where Mij defined by (28) should be replaced, by
the corresponding quantities Mij,ν minus the singularity at λν :

Mij,ν = Mij,ν(λ) =
α

π
ln

1
|di − dj |

+N(di, dj , λ)− mνci,ν
λν − λ

, (109)

i �= j, i, j = 1, 2,

Mii,ν = Mii,ν(λ) = N(di, di, λ)− mνci,ν
λν − λ

, i = 1, 2, (110)

where

|cν |2 =
2∑
j=1

|cj,ν |2, ci,ν = ϕ
(i0,i)
N (0) = cos

πNdi
ai0

, i = 1, 2,

fν = (ϕ(i0,1)
N , ϕ

(i0,2)
N )T .

(111)

and the quantities that enter (109) and (110) are given in Appendix A.

3.3. Rectangular Cavity with Two Slots in Opposite Walls

The cross section of this cavity by the plane x3 = 0 is formed by three
rectangular domains

Ω1 = {r = (x1, x2) : 0 < x1 < a1; 0 < x2 < b1},
Ω2 = {r : a12 < x1 < a12 + a2; −b < x2 < 0},
Ω3 = {r : a13 < x1 < a13 + a3; b1 < x2 < b1 + b3},

with the common parts of the boundaries ∂Ω1 ∩ ∂Ω2 ⊂ {r : x2 = 0}
and ∂Ω1 ∩ ∂Ω3 ⊂ {r : x2 = b1} containing the intervals (slots)

Γ1 = {r : x2 = 0, d1 − w1 < x1 < d1 + w1} ⊂ ∂Ω1 ∩ ∂Ω2,

Γ2 = {r : x2 = b1, d2 − w2 < x1 < d2 + w2} ⊂ ∂Ω1 ∩ ∂Ω3.

The permittivity ε = ε(r) = εi, r ∈ Ωi, i = 1, 2, 3, is a piecewise
constant function of r.

The statement of the corresponding boundary eigenvalue problem
is similar to (95)–(99). It is necessary to determine the values of
parameter λ for which there exist nontrivial solutions to the homo-
geneous Helmholtz equation

∆u(r) + λεu(r) = 0, r ∈ Ω = Ω1 ∪ Ω2 ∪ Ω3, (112)
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satisfying the homogeneous boundary condition

∂u

∂x2
= 0 (113)

on (∂Ω3\Γ2)∪(∂Ω2\Γ1)∪(∂Ω2\Γ), where Γ = Γ1∪Γ2, the conjugation
conditions

[u1 − u2]
∣∣
Γ1

= 0, [u1 − u3]
∣∣
Γ2

= 0, ui = ui(r), r ∈ Ωi, i = 1, 2, 3,
(114)[

1
ε1

∂u1

∂x2
− 1
ε2

∂u2

∂x2

] ∣∣∣∣∣
Γ1

= 0,
[

1
ε1

∂u1

∂x2
− 1
ε3

∂u3

∂x2

] ∣∣∣∣∣
Γ2

= 0, (115)

and the Meixner condition (99).
The Fredholm property and existence of generalized and classical

solutions to the corresponding inhomogeneous problem is proved in [5].
Therefore, there may exist only isolated eigenvalues of this problem.

Introduce Green’s functions of the second boundary value problem
for the Helmholtz equation (112) in rectangles Ωi, i = 1, 2, 3:

G1(λ; r, q) =
4

a1b1

∞∑
n=0

∞∑
m=0

δnδm
ψn(x1,a1)ψn(x0

1,a1)ψm(x2,b1)ψm(x0
2,b1)

µ
(1)
nm − λ

,

(116)

G2(λ; r, q) =
4

a2b2

∞∑
n=0

∞∑
m=0

δnδm

· ψn(x1 − a12, a2)ψn(x0
1 − a12, a2)ψm(x2, b2)ψm(x0

2, b2)

µ
(2)
nm − λ

,

(117)
G3(λ; r, q) =

4
a3b3

∞∑
n=0

∞∑
m=0

δnδm

· ψn(x1 − a13, a3)ψn(x0
1 − a13, a3)ψm(x2 − b1, b3)ψm(x0

2 − b1, b3)

µ
(3)
nm − λ

.

(118)

Green’s functions Gi(λ; r, q) are meromorphic with the sets of poles
Mi = {µ(i)

nm}∞n,m=0, i = 1, 2, 3.
Applying Green’s identity to ui = ui(r), r ∈ Ωi, and Green’s

function Gi in every domain Ωi (i = 1, 2, 3), and denoting

q0
1 = (s, 0) ∈ Γ1, q0

2 = (s, b1) ∈ Γ2,

r0
1 = (t, 0) ∈ Γ1, r0

2 = (t, b1) ∈ Γ2,
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we obtain the representation of u in the form of generalized potentials
(Green’s potentials):

u1(r) = −
∫

Γ1

G1(λ; r, q0
1)
∂u1

∂x2

∣∣∣∣
Γ1

(s)ds+
∫

Γ2

G1(λ; r, q0
2)
∂u1

∂x2

∣∣∣∣
Γ2

(s)ds, r∈Ω1,

ui(r) = (−1)i
∫

Γi−1

Gi(λ; r, q0
i )
∂ui

∂x2

∣∣∣∣
Γi−1

(s)ds, r ∈ Ωi, i = 2, 3. (119)

Introduce the notations for the unknown densities according to
(115)

ϕ1(s) =
∂u1

∂x2

∣∣∣∣
Γ1

(s) =
ε1
ε2

∂u2

∂x2

∣∣∣∣
Γ1

(s), d1 − w1 < s < d1 + w1,

ϕ2(s) =
∂u1

∂x2

∣∣∣∣
Γ2

(s) =
ε1
ε3

∂u3

∂x2

∣∣∣∣
Γ2

(s), d2 − w2 < s < d2 + w2.

Separate slowly converging parts in the series for kernels of
Green’s potentials (119) defined using (116)–(118) by performing the
summation in m with the help of the formulas

∞∑
m=0

δm
ψm(t, bi)

µ
(i)
nm − λ

=
biεi
2
f (i)
n (bi − t, λ),

∞∑
m=0

δm(−1)m
ψm(t, bi)

µ
(i)
nm − λ

=
biεi
2
f (i)
n (t, λ),

where

f (i)
n (u, λ) =


cosh γ(i)

n u

γ
(i)
n sinh γ(i)

n bi
,

π2n2

a2
i

> εiλ,

− cos γ(i)
n u

γ
(i)
n sin γ(i)

n bi
,

π2n2

a2
i

< εiλ,

γ(i)
n =

√∣∣∣∣π2n2

a2
i

− εiλ

∣∣∣∣, i = 1, 2, 3.

(120)

As a result, we obtain

G1(λ; r, q0
1) =

2ε1
a1

∞∑
n=0

δnψn(x1, a1)ψn(s, a1)f (1)
n (x2, λ), (121)
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G1(λ; r, q0
2) =

4
a1b1

∞∑
n=0

δnψn(x1, a1)ψn(s, a1)
∞∑
m=0

δm(−1)m
ψm(x2, b1)

µ
(1)
nm − λ

=
2ε1

a1

∞∑
n=0

δnψn(x1, a1)ψn(s, a1)f (1)
n (x2, λ), (122)

G2(λ; r, q0
1) =

2ε2
a2

∞∑
n=0

δnψn(x1 − a12, a2)ψn(s− a12, a2)f (2)
n (x2, λ),

(123)

G3(λ; r, q0
2) =

2ε3
a3

∞∑
n=0

δnψn(x1 − a13, a3)ψn(s− a13, a3)f (3)
n (x2−b1, λ).

(124)

To represent the solution in the form of Green’s potentials (119)
in the case of narrow slots, we take wj , j = 1, 2, as small parameters,
make use of the fact that

ϕj(s) =
ϕ∗i (s)√

[s− (wj − dj)][(wj + dj)− s]
, wj − dj < s < wj + dj

(125)

according to the edge condition (99), where ϕ∗i (s) is a differentiable
function, change variables by s = wjx+dj , j = 1, 2 (−1 < x < 1), and
evaluate the integrals involving ϕj(s) to obtain, discarding the terms
of order O(w2

j ),

u1(r) =
2πε1

a1

∞∑
n=0

δn[ϕ∗2(d1)ψn(d2, a1)− ϕ∗1(d1)ψn(d1, a1)]

· ψn(x1, a1)f (1)
n (x2, λ), r ∈ Ω1, (126)

u2(r) =
2ϕ∗1(d1)πε2

2

a2ε1

∞∑
n=0

δnψn(x1 − a12, a2)ψn(d1 − a12, a2)

· f (2)
n (x2, λ), r ∈ Ω2, (127)

u3(r) = −2ϕ∗2(d2)πε2
3

a3ε1

∞∑
n=0

δnψn(x1 − a13, a3)ψn(d2 − a13, a3)

· f (3)
n (x2 − b1, λ), r ∈ Ω3. (128)

Note that for every fixed x2 �= 0 f
(3)
n (x2 − b1, λ) and f

(3)
n (x2, λ) are

exponentially decaying functions of x2. Setting formally ϕ∗1(d1) = 1
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and ϕ∗2(d2) = 0 in (126)–(128) we obtain the representations for the
solution to (95)–(99) in the case of the resonator with one slot formed
by two rectangular domains.

Applying conjugation condition (114) to the potentials (119) and
using the definitions of the unknown densities, we obtain the system
of integral equations∫

Γ1

[ε1G1(λ; r0
1, q

0
1) + ε2G2(λ; r0

1, q
0
1)]ϕ1(s)ds

−
∫

Γ2

ε1G1(λ; r0
1, q

0
2)ϕ2(s)ds = 0, t ∈ Γ1,

−
∫

Γ1

ε1G1(λ; r0
2, q

0
1)ϕ1(s)ds

+
∫

Γ2

[ε1G1(λ; r0
2, q

0
2) + ε3G3(λ; r0

2, q
0
2)]ϕ2(s)ds = 0, t ∈ Γ2,

(129)

with respect to ϕ1(s) and ϕ2(s). We consider the operator K(λ) of
the system (129) as an integral OVF (73) defined on two intervals of
integration Γ1 and Γ2 (see (74) with n = 2) given componentwise by
(22). Write K(λ) in the matrix form (21) using the variables t, t0 ∈ Γi,
i, j = 1, 2

K(λ) =
(
K11(λ) K12(λ)
K21(λ) K22(λ)

)
, (130)

where

Kij(λ)ϕj = [αijLijϕj +Nij(λ)]ϕj

=
∫

Γj

[
αij
π

ln
1

|t0 − t| +N(t0, t, λ)
]
ϕj(t)dt, t0 ∈ Γi, (131)

i, j = 1,2, α11 = ε1 + ε2, α22 = ε1 + ε3, α12 = α21 = −ε1.

Transform OVF given by (130) to the equivalent form with the in-
tegration in each operator Kij (131) over (−1, 1). The smooth part
N(t0, t, λ) of the kernel of K(λ) can be represented componentwise
using (25) in the form similar to (106). The corresponding formulas
are given in Appendix A.

In order to determine the CNs of K(λ) in the vicinity of poles
when the diameters of the integration intervals are small, we will use
representation (79) with a separated pole term and the methods de-
veloped in Section 2.

Introducing two-dimensional vector-functions (75) and (76) and
applying the procedure developed above for the case of two intervals,
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we obtain the equation (83) for the sought-for CNs of K(λ) in which
the inner product is defined according to (45). Using the asymptotic
representation (55) we obtain, discarding the terms of the order O(q),
the equation λ = Fν(λ) given by (84)–(89). The quantities Bj,ν herein
are given by (28), (33), (35), (37), and (89), where Mij defined by
(28) should be replaced, in line with (109) and (110), by the quantities
Mij,ν (90) and (91) minus the singularity at λν . The resulting formulas
are similar to (108)–(144); the right-hand side of the transcendental
equation of the method in (69) λ = Fν(λ) written for a chosen pole
λν = µ

(i0)
NM ∈M

i0
0 , i.e., for a chosen triple N,M, i0: N,M = 0, 1, 2, . . . ,

i0 = 1, 2, 3 has the form (108). The function Gfν is introduced in (85),
and Mij,ν are given by (109) and (110) where ci,ν = ϕ

(i0,i)
N (0), α = 1;

the representations for N(di, dj , λ) − mνci,ν/(λν − λ), i, j = 1, 2, are
given in Appendix A.

Expanding in powers of small parameters βi and retaining the
first- and second-order terms involving βni , n = 0, 1, 2, i = 1, 2, and
β1β2 and discarding the third-order terms involving βni with n ≥ 3 and
βk1β

m
2 with k + m ≥ 3, we obtain the expansion of Fν(λ) in powers of

small parameters βi given by (57) and (92). It is easy to see that Fν(λ)
thus obtained is a contraction mapping.

Substituting into the equation λ = Fν(λ), in which the left-hand
side is replaced by λ∗ν and the right-hand side, by (88), where Gfν is
expanded using (57) with Mii,ν = Mii,ν(λ) replaced by their values
M̂ii,ν = Mii,ν(λν) at λ = λν , we obtain the expansion of the root λ∗ν
in powers of small parameters βi (i = 1, 2) containing all second-order
terms (if we take into account that λ − λν = O(β̂) according to (87),
(88), and (92)). The resulting formula is similar to the corresponding
expansion (71) obtained in the case of one interval of integration.

3.4. Critical Points and Mode Coupling

The essence of the mathematical model investigated in [7] and de-
veloped in [5] for slotted cavities is to consider homogeneous integral
equations (102) and (129) as operator DEs, called the generalized DE,
and determine CNs of the corresponding OVFs K(λ) = K(λ, η̄) as
implicit functions λ(η̄) of the vector of nonspectral parameters η̄ =
(a1, a2, b1, b2, w, . . . ); these implicit functions were called generalized
dispersion curves (GDCs). It is reasonable to determine λ = λ(ξ)
with respect to one particular parameter ξ ∈ η̄ (other parameters
being fixed), and to analyze one particular GDC on the (λ, ξ)-plane
for different values of another parameter ζ ∈ η̄ or the behaviour of
several GDCs on the same parameter plane in the vicinities of certain
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(critical) points. Sometimes GDCs exhibit a behaviour [5] that reveals
the presence of different singular (e.g., saddle) points of OVF K(λ, η̄)
considered as a two-parameter mapping. Consequently, the interaction
can be simulated and explained as a phenomenon inherent to slotted
structures.

However, it is virtually impossible to analyze the properties of
multi-parameter operators K(λ, η̄) and implicit dependences λ(η̄) as
OVFs proper. In order to make this analysis efficient we have reduced
in this paper the determination of SEs of slotted cavities under study,
e.g., the generalized (operator) DEs K(λ, η̄) = 0, to functional DEs
(69), (104), and (108) of the form Φν(λ) = 0, where Φν(λ) ≡ λν−Fν(λ)
is a complicated multi-parameter mapping, Φν(λ) = Φν(λ, η̄).

It is known [8] that various interaction phenomena and mode
coupling is observed in the vicinity of different CPs P ∗ = (λ∗, ξ∗) of
Φν(λ) in the (λ, ξ)-plane. A complete study of all such CPs goes beyond
the scope of this paper. Here we mention only certain types of CPs
that can be naturally distinguished: (i) the DPs at which two or several
poles of K(λ, η̄) given by (101) merge; (ii) certain extrema points of
Φν(λ); and (iii) singularities of Φν(λ) itself; note, in particular, that its
poles are CNs of the principal-part OVFs L1(λ) (11) (zeros of α+ g̃(λ)
in (14)) and LP (λ) (29).

Consider CPs (i). The set (101) is a multi-parameter family of
points {µ(i)

nm}∞n,m=0 (i = 1, 2) that can merge at different combinations
of parameters. Let us analyze here one particular situation of the inter-
action in a rectangular cavity with one slot formed by two rectangular
domains Ω1 = {0 < x1 < a1, 0 < x2 < b1} and Ω2 = {0 < x1 <
a2, −b2 < x2 < 0} (problem (95)–(99)): two points of the set (101)
of the same index i merge when one parameter ξ = ai is varied (ai is
the width of a partial rectangular domain) and other parameters are
fixed. More specifically, we determine the values of ξ at which two
eigenvalues

λν =
π2

εν

(
n2
ν

ξ2
+
m2
ν

b2ν

)
, λµ =

π2

εµ

(
n2
µ

ξ2
+
m2
µ

b2µ

)
of the Laplacian of one and the same partial rectangular domain
coincide. Below we will make use of the fact that there is a one-to-one
correspondence between every ν and µ that number λν and λµ and
the triples of integers (i,Ni,Mi), i = 1, 2. Note also that the points
of the set (101) are poles of the OVF K(λ) in (102) to which problem
(95)–(99) is reduced. Considering µ

(i)
nm = µ

(i)
nm(ξ) as functions of ξ, it
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Figure 1. The eigenvalue curves µ
(1)
nm = µ

(1)
nm(a1) (n,m = 0, 1, 2)

of three first fundamental oscillations of a rectangular resonator with
the cross section Ω1 = {0 < x1 < a1; 0 < x2 < b1}, b1 = 2.4.
The insert shows the enlarged fragment containing the (extreme right)
point of intersection of the µ

(1)
11 (a1) and µ

(1)
20 (a1) curves, the DP

(λ∗, a∗) ≈ (0.762, 4.126).

is easy to verify that µ(i)
n1m1(ξ) = µ

(i)
n2m2(ξ) = λ∗ at

ai = bi

√
n2

1 − n2
2

m2
2 −m2

1

, (132)

when

n1 > n2 and m2 > m1 or n1 < n2 and m2 < m1. (133)

Figure 1 shows µ
(1)
nm = µ

(1)
nm(a1) with n,m = 0, 1, 2 for a rectangular

resonator with the cross section Ω1 = {0 < x1 < a1; 0 < x2 < b1},
b1 = 2.4. One observes eight points of intersection; i.e., there are eight
DPs in the range 0.1 < λ < 16, 1 < a1 < 4.5.

Condition (132) and (133) specify the infinite family of DPs at
which oscillations H i

n1m1
and H i

n2m2
interact. Note that (132) gives

additionally characteristic dimensions of the partial cavity i at which
this interaction takes place.
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The interaction of oscillations in this rectangular cavity with one
slot was described in [5] close to a DP P ∗ = (λ∗, a∗) (in the (λ, ξ)-
plane), at which two poles merge,

λν(a∗) = λµ(a∗) = λ∗; (134)

ξ = a1 was taken as the width of a partial (upper) rectangular domain.
Representing the OVF K(λ) in (102) as

K(λ)ϕ = Kνµ(λ)ϕ+
mν

λν − λ
(ϕ,ϕν)ϕν +

mµ

λµ − λ
(ϕ,ϕµ)ϕµ

and performing the approximate semi-inversion of K(λ) in the vicinity
of P ∗ = (λ∗, a∗), one reduces evaluation of its CNs (the sought-for SEs
of the slotted cavity) to the determination of roots λ∗ν = λ∗ν(a1) of the
equation λ = Fν,µ(λ) of the form (104). The function λ− Fν,µ(λ) can
be reduced in the vicinity of P ∗ to a canonical quadratic form [5] which
exhibits a characteristic saddle-type behavior in the (λ, ξ)-plane (close
to (λ∗, a∗)) corresponding to a typical case of interaction. The roots λ∗ν
were determined in the vicinity of λν = µ

(1)
11 (N = M = 1, i0 = 1) and

λν = µ
(1)
20 (N = 2, M = 0, i0 = 1) which merge at a DP P ∗ = (λ∗, a∗)

determined from (132) at n1 = m1 = 1 and n2 = 2, m2 = 0 (i = 1):

µ
(1)
11 = µ

(1)
20 = λ∗ at λ∗ =

2π2

ε1a∗2
, a∗ = b1

√
3 (b1 is fixed). (135)

In the vicinity of this DP, oscillations H1
11 and H1

20 interact and
exchange their types.

In [5], the following set of (normalized to the free-space wave-
length) parameters was considered: b1 = a2 = b2 = 2.4, d = 1.4,
ε1 = 3.0, ε2 = 1.0, and w = 0.0005 (β = 0.4133 . . . ). For these
values, the DP (λ∗, a∗) ≈ (0.762, 4.126) is situated in the domain of
the H1

11 � H1
20 interaction 3.7 < a1 < 4.2, 0.6 < λ < 1. Let us analyze

properties of the right-hand side of the equation (104) in this domain
using the formulas (153) and (155) given in Appendix B. For the chosen
values of parameters, when b1, a2, b2, d, ε1, ε2, and w are fixed and a1 is
varied in the interval (3.7, 4.2), only two poles of the set (101) lie in the
interval 0.6 < λ < 1 which contains the DP, 0.509 < µ2 < 0.806 and
0.733 < µ1 < 0.839, and only µ2 is a pole of M0,ν(λ) and a removable
singularity of Fν(λ); in a vicinity of µ2, the function Fν(λ) is calculated
according to (104) and formulas (153)–(155) given in Appendix B:

Fν(λ) = λν +
fν(µp − λ)

cp + (µp − λ)Mν,p
, |λ− µp| < ∆, p = 1, 2. (136)

It is easy to see that there are no poles of M0,ν(λ) that merge in the
interval 0.6 < λ < 1 except for µ1 and µ2.
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4. NUMERICAL AND DISCUSSION

Eigenfrequencies of the cylindrical slotted cavities with one and two
slots were calculated as roots of the DEs (69), (104), and (108). For a
sufficiently small β < β0 (for practical computations one may choose as
large as β0 ∼ 0.9) the equations λ = Fν(λ) can be solved numerically
in a vicinity of a chosen λν = µ

(i0)
NM ∈ M

i0
0 (a chosen triple N,M, i0:

N,M = 0, 1, 2, i0 = 1, 2, 3) using the fixed-point iterations

zk+1 = Fν(zk), k = 0, 1, 2, . . . , z0 = λν . (137)

The method converges fast because we have, denoting by s = Fν(s)
the exact root,

|zk+1 − s| = |Fν(zk)− Fν(s)|

=
∣∣∣∣dFν(ξ)dλ

∣∣∣∣ |zk − s| < βA|zk − s| < · · · < (βA)k+1|z0 − s|,
(138)

where ξ is a point in the vicinity of s and A is a constant given by
(94), so that the rate of convergence is estimated by const · βk+1.

The SEs calculated vs. the width a1 of the central rectangular
cavity of a two-cavity resonator with one slot graphically coincide with
the eigenvalue curves in Fig. 1 (with respect to the scale used in this
figure) in the range of slotwidths approximately 10−7 < 2w < 10−2.
The same holds for two- and three-cavity resonators.

For exponentially narrow slots (10−8 < 2w < 10−4), the field
distributions in partial domains were calculated using Green’s poten-
tials (119) and (126)–(128). For wider slots (10−4 < 2w < 10−1),
calculations were performed using semi-inversion and also the reduc-
tion to infinite-matrix (summation) equations as in [5].

4.1. Regular Regimes

The interaction phenomena and mode coupling, when small changes of
the structure parameter(s) close to certain critical values cause abrupt
(discontinuous) changes in the field distributions, may be generally
called critical regimes. They have a local character and are observed
in small vicinities of certain frequency values, in particular those
corresponding to DPs. Other (noncritical) regimes, when the field
distributions undergo continuous variations in a wide range of the
structure parameter(s) (e.g., in an interval of variation of a chosen
parameter ξ that does not contain the critical values of ξ) may be
conventionally called regular regimes.
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Figure 2. TheH1
11 field distribution in a two-cavity resonator with one

exponentially narrow slot (β =
(

1
π ln 1

w

)−1 = 0.2, which corresponds to
the slotwidth 2w = 3 ·10−7) cut in the left-middle and middle positions
in the wall separating the cavities (the widths and heights of the upper
and lower cavities 1 and 2 are, respectively, a1 = 4.2, b1 = 2.4, a2 = 2.4,
b2 = 2.4; all dimensions are normalized to the free-space wavelength).

We calculated the distributions of eigenfields of the first three
fundamental eigenoscillations H i

nm (n,m = 0, 1, 2, i = 1, 2, 3) in the
three types of slotted cavities under study in several regular regimes.
The results of computations enable us to formulate several conclusions.

(i) The H i0
nm field distributions in the cavity i with i �= i0 strongly

depend on the slot positions dj , while in the cavity i0, the fields
are virtually independent on dj (j = 1, 2, Figs. 4, 9). However,
we cannot state that there are certain critical slotwidths or slot
positions: the variations in the field structure with respect to the
latter have a continuous character, which is illustrated by Fig. 9
and also by Figs. 10, 11, and 18–20. Note that in the latter case
(Figs. 18–20), an increase of the slotwidth in the range of larger
values causes gradual changes in the field structure. The same
holds when, e.g., the width of one of the cavities is increased
outside the intervals containing its critical values (see Fig. 5 and
Figs. 10–12 and 13–16).

(ii) The field amplitude in the three-cavity resonator is always higher
in the cavity filled with a dielectric having larger permittivity; this
is clearly seen in all figures representing these resonators (e.g., in
Figs. 6–8), where in the central cavity 1 the permittivity ε1 = 3
and in upper and lower cavities 2 and 3, ε2 = ε3 = 1.

(iii) Several oscillation types of equal indices and, first of all, the
fundamental H1

11 (in the three-cavity resonator with two slots
composed of three equal cavities) exhibit a stable symmetric
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Figure 3. The H1
10 field distribution in a two-cavity resonator with

two exponentially narrow slots (2w1 = 2w2 = 3 · 10−7, β = 0.2;
a1 = 4.2, b1 = 2.4, a2 = 2.4, b2 = 2.4). The slot positions can be
clearly seen.

Figure 4. The H1
21 field distribution in a two-cavity resonator with

one slot, which occupies the right-middle, middle, and left-middle
positions. The geometric parameters are given in the caption to Fig. 2.
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Figure 5. The H1
11 field distribution in a three-cavity resonator with

two exponentially narrow slots (2w1 = 2w2 = 3 · 10−7, β = 0.2) cut
symmetrically in the opposite walls of the central cavity 1 (with regard
to the initial geometry in the upper left corner) as the width a1 of the
central cavity 1 increases from 2.4 to 4.2; other geometric parameters
are b1 = a2 = b2 = a3 = b3 = 2.4.

behavior (Fig. 8); on the other hand, the oscillations of unequal
indices, like H1

10 and H2
20 may be nonsymmetric with respect to

the horizontal symmetry line of the resonator (Figs. 4, 5, 9).

The H1
11 field distributions in two-cavity resonators with wider

slots (the case of one slot) are shown in Figs. 10–20. The chains of
pictures show, respectively, the effects of the increasing height b2 of the
lower cavity Ω2 (Figs. 10, 11, 13–17) and of the displacement of the
slot from the right central to the extreme right position (Fig. 12). The
latter definitely causes the field concentration in the partial domain Ω1

close to the symmetry lines of the rectangle. One can see also how the
next oscillation type is established as b2 increases. Figures 18–20 show
how the increasing width of the slot influences the H1

11 field structure.
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Figure 6. The H2
22 field distribution in a three-cavity resonator with

two exponentially narrow slots cut symmetrically in opposite walls.
The geometric parameters are given in the caption to Fig. 5 with
a1 = 2.4. The bottom-right picture shows the entire resonator (when
the same scale is used for all three partial cavities); the left pictures
show the fields in the upper and lower cavities, and the top-right picture
shows the central cavity (a particular scale is applied in each partial
cavity to display the details). The field amplitude in the central cavity
is by several orders of magnitude greater than in other cavities.

4.2. Critical Regimes: Interaction of Oscillations

The locations of several ‘zero-order’ DPs at which the eigenvalue curves
µ

(1)
nm = µ

(1)
nm(a1) (n,m = 0, 1, 2) of three first fundamental oscillations

intersect can be seen from Fig. 1. The interaction may occur in the
vicinity of every such point. However, its character and intensity
depend on the cavity parameters, as follows from Fig. 23.

A numerical analysis of the typical example of interaction consid-
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Figure 7. The H2
22 field distribution in a three-cavity resonator

with two exponentially narrow slots; the lower slot is cut (in the wall
separating the central (1) and lower (2) cavities) close to the left corner
and the upper slot is cut in the middle (of the wall separating the
middle and upper cavities). The bottom-right picture shows the entire
resonator (the same scale is used for all three partial cavities); the
left pictures show the fields in the upper and lower cavities, and the
top-right picture shows the central cavity (a particular scale is applied
in each partial cavity to display details). The field amplitude in the
central cavity is by several orders of magnitude greater than in other
cavities. The geometric parameters are as in Fig. 6.

Figure 8. The H1
11 filed distribution in a three-cavity resonator with

two exponentially narrow slots cut symmetrically in opposite walls.
The geometric parameters are as in Fig. 6.
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Figure 9. The variation of the H1
10 field with respect to the upper

slot position in a three-cavity resonator with two exponentially narrow
slots cut symmetrically in opposite walls. The geometric parameters
are as in Fig. 6.

Figure 10. The variation of the H1
11 field with respect to the height of

the lower cavity increasing from b2 = 2.6 (top-left) to b2 = 3.4 (bottom-
right) in a two-cavity resonator with one narrow slot (2w = 0.001,
β = 0.4548); the slot position d = 2, a1 = 4.126, and b1 = a2 = 2.4.
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Figure 11. The variation of the H1
11 field with respect to the height of

the lower cavity increasing from b2 = 2.6 (top-left) to b2 = 3.4 (bottom-
right) in a two-cavity resonator with one narrow slot (2w = 0.001,
β = 0.4548); the slot position d = 1.5, a1 = 4.126, and b1 = a2 = 2.4.

Figure 12. The variations of the H1
11 field in a two-cavity resonator

with respect to (i) the slot position (the first five pictures) changing
from d = 1.5 (left in the first line) to d = 2 (right in the second line)
and (ii) position of the lower cavity 2. The geometric parameters are
as in Fig. 10 with b2 = 2.6.
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Figure 13. The H1
11 field in a two-cavity resonator with one slot; the

slot position d = 1.5, the slotwidth 2w = 0.001 (β = 0.4548), and the
width of the lower cavity 2 b2 = 2.351; other geometric parameters are
a1 = 4.126 and b1 = a2 = 2.4. The insert shows the current on the
wall separating the cavities. The horizontal lines with figures indicate
the characteristic (maximum) scale of the field amplitude.

Figure 14. The H1
11 field in a two-cavity resonator with one slot;

b2 = 2.353; for other parameters see Fig. 13.
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Figure 15. The H1
11 field in a two-cavity resonator with one slot;

b2 = 2.357; for other parameters see Fig. 13.

Figure 16. The H1
11 field in a two-cavity resonator with one slot; the

slot position d = 2.0, 2w = 0.001 (β = 0.4548), and the width of the
lower cavity 2 b2 = 2.353; for other parameters see Fig. 13.
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Figure 17. The H1
11 field in a two-cavity resonator with one slot;

d = 2.0, and b2 = 2.357; for other parameters see Fig. 13.

Figure 18. The H1
11 field in a two-cavity resonator with one slot;

d = 2.0, the slotwidth 2w = 0.02 (β = 0.6822), and b2 = 2.357; for
other parameters see Fig. 13.
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Figure 19. The H1
11 field in a two-cavity resonator with one slot;

d = 2.0, 2w = 0.03 (β = 0.7481), and b2 = 2.357; for other parameters
see Fig. 13.

Figure 20. The H1
11 field in a two-cavity resonator with one slot;

d = 2.0, 2w = 0.04 (β = 0.8031), and b2 = 2.357; for other parameters
see Fig. 13.
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Figure 21. The dynamics of the H1
11 � H1

20 interaction in the left
vicinity of the DP (λ∗, a∗) ≈ (0.762, 4.126) shown in Fig. 1. The
geometric parameters are 2w = 0.001 (β = 0.4548), d = 2, and
b1 = a2 = a2 = 2.4.

ered in Section 3.4 is based on the results of calculations performed
for the rectangular cavity with one slot in the domain 3.7 < a1 < 4.2,
0.6 < λ < 1 of the H1

11 � H1
20 interaction. According to the insert in

Fig. 1, there is only one DP in this domain. We consider the influence
of the width of rectangular domain Ω1 (parameter a1) on the structure
of H1

11- and H1
20-types of oscillations, other geometrical parameters and

material parameters being fixed.
Figure 23 shows the dependences of µ

(1)
11 and µ

(1)
20 and the

corresponding SEs. The curves are plotted in the (λ, a1)-plane, and
have the point of intersection when the width of the domain a1 = a∗ ≈
4.156. At this point SEs are λ(1)

11 (a∗) = 0.7616 and λ
(1)
20 (a∗) = 0.7618.

Figures 21 and 22 show how the H1
11 and H1

20 oscillations exchange
their types as the width a1 of the upper cavity passes the critical value
a∗.

It can be seen however that when the resonator is ‘tuned’ to an
H i0
nm oscillation, strong local changes and the field restructuring occur
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Figure 22. The dynamics of the H1
11 � H1

20 interaction in the right
vicinity of the DP (λ∗, a∗) ≈ (0.762, 4.126). The geometric parameters
are as in Fig. 21.

Figure 23. µ(1)
11 and µ

(1)
20 vs. a1 (top-left graph) and the corresponding

SEs in the vicinity of the DP (λ∗, a∗) ≈ (0.762, 4.126) for different slot
positions.
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Figure 24. An example of the transition process of interaction in a
two-cavity resonator with one exponentially narrow slot.

only in the domain Ωi0 , while in other partial domains Ωi with i �= i0
the field distributions remain stable, and also in the vicinity of the
critical resonator dimensions. Also, the following conclusions can be
formulated.

(i) Obviously, there is no interaction of oscillations in a rectangular
cylindrical resonator without a slot and, in particular, in each
partial rectangular cavity of the two- and three-cavity resonators
under consideration when the slot is absent. On the other hand,
a certain form of interaction always takes place in the presence of
an arbitrarily narrow slot cut in the wall.

(ii) Interaction takes place when the eigenfrequencies µinm of the same
index i merge. As a hypothesis, confirmed by many numerical
results, we may state that there is no interaction in the vicinity of
the points where µi1n′m′ = µi2nm with i1 �= i2.

Two more typical examples of critical regimes are shown in Figs. 24
and 25.
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Figure 25. An example of the transition process of interaction
in a three-cavity resonator with two exponentially narrow slots cut
symmetrically in the lower and upper walls of the central cavity.

5. CONCLUSION

The description of eigenfields in slotted resonators represents a compli-
cated multi-parameter problem where various critical regimes can be
described in terms of CPs of the operators of the problem. Different
types of CPs lead to different kinds of local effects, such as interaction
and mode coupling. It is convenient to study the operator equations
using integral OVFs with a logarithmic singularity of the kernel.

In this work, the methods of analytical semi-inversion of these
integral OVFs are developed to the case of several intervals of
integration. The results are applied to the analysis of a family of
slotted resonators. The eigenfrequencies and field distributions are
calculated in various critical and regular regimes.

It is shown that the field distributions undergo pronounced
variations in type and amplitude in very small vicinities of isolated
values of one of the resonator’s geometric parameters (e.g., the width
(a1) of one of the partial domains). These values virtually do not
depend on the slotwidth (at least when the latter is sufficiently small)
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and on the position of the lower resonator (in a broad range of
variation of the corresponding geometric parameters). Therefore, such
characteristic values may be considered, in particular, as constants
inherent to the resonator under study (when all other resonator’s
parameters are fixed). The interaction mode is preserved in a broad
range of variation of geometric parameters.

The occurrence of interaction is demonstrated for closed structures
as a result of inserting a small inhomogeneity (in the form of a narrow
slot).

The results obtained in this study can be used for improving
the design of filters and switches on the basis of simple prototype
structures.
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APPENDIX A.

The coefficients in (57) are determined from the following formulas:

d3(λ) =
ln 2
π

(
ln 2
π

+
M11

α

) [
M11

α
− 1 +

|c2|2
c0

ln 2
π

]
,

d4(λ) =
ln 2
π

(
ln 2
π

+
M22

α

) [
M22

α
− 1 +

|c1|2
c0

ln 2
π

]
,

d5(λ) =
1
c0

[
− ln 2

π
(c0A1A2 −A12)

− α2

(
ln 2
π

)2 2∑
i=1

|ci|2(A1b2 +A2bi1 + bi12)
]
,

Ai =
ln 2
π

+
Mii

α
, A12 =

(
ln 2
π

)2

+
ln 2
πα

(M11 +M22) +
|M |
α2

,

|M | = M11M22 −M12M21, bii = α
π

ln 2
Mii, i = 1, 2,

b12 = α2 + b22, b21 = α2 + b11.
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The quantity M0,ν(λ) in (104) is represented as

M0,ν(λ) =
2∑
i=1

εi

{
2
aibi

D
(i)
0 (λ) +

∞∑
n=1

[
4
aibi

D
(i)
n,i0NM

(λ) +
2
π
Q(i)
n

]
· cos

πnd

ai
− 1
π

ln
∣∣∣∣2 sin

πd

ai

∣∣∣∣}, (A1)

where

D
(i)
0 (λ) =

∞∑
m=0

δm

µ
(i)
0m − λ

, i = 1, 2,

D(i)
n (λ) = λ

∞∑
m=0

δm

µ
(i)
nm(µ(i)

nm − λ)
, i = 1, 2, n = 1, 2, . . . ,

D
(i)
n,i0NM

(λ) =
∞∑
m=0

δm

(
1− δinm,i0NM

µ
(i)
nm − λ

− 1

µ
(i)
nm

)
,

i, i0 = 1, 2, n = 1, 2, . . . , N,M = 0, 1, 2, . . . ,

Q(i)
n = Q(i)

n (ai, bi) =
e−πnbi/ai

sinh(πnbi/ai)
, i = 1, 2, n = 1, 2, . . . .

(A2)

and δinm,i0NM is the triple Kronecker delta which eliminates the term
containing the chosen pole λν ,

δinm,i0NM =
{

1, i = i0, n = N, m = M,

0, otherwise
(A3)

so that M0,ν(λ) has no singularity at the separated pole λν in (104).
The series for D

(i)
n (λ), i = 1, 2, n = 1, 2, . . . , converge uniformly in

every closed domain on the complex λ-plane that does not contain
(real) points µ(i)

nm and define therefore meromorphic functions of λ with
the respective poles. In addition, one can perform iterated summation
in D

(i)
n (λ) and D

(i)
n,i0NM

(λ) with i, i0 = 1, 2 and n ≥ 1 by virtue of the
estimates∣∣∣∣∣ 1

µ
(i)
nm(µ(i)

nm − λ)

∣∣∣∣∣ ≤
(
εia

2
i b

2
i

π2

)2 1
n2

∣∣∣∣ 1
m2 − (εib2i /π2)λ

∣∣∣∣ , i = 1, 2,

(A4)

which hold for sufficiently large n and m.
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The questions in (109) and (110) are as follows:

N(di, dj , λ)− mνci,ν
λν − λ

=
2∑
p=1

εp

{
2

apbp
D

(p)
0 (λ)+

4
apbp

∞∑
n=1

D
(p)
n,i0NM

(λ)ϕ(p,i)
n (0)

2
π

∞∑
n=1

Q(p)
n ϕ(p,i)

n (0)

− 1
π

[
ln

∣∣∣∣∣2 sin π
2ap

(dj − di)
π

2ap
(dj − di)

∣∣∣∣∣ + ln
∣∣∣∣2 sin

π

2ap
(dj + di)

∣∣∣∣
]}

, (A5)

N(di, di, λ)− mνci,ν
λν − λ

=
2∑
p=1

εp

{
2

apbp
D

(p)
0 (λ) +

4
apbp

∞∑
n=1

D
(p)
n,i0NM

(λ)ϕ(p,i)
n (0)

+
2
π

∞∑
n=1

Q(p)
n ϕ(p,i)

n (0)− 1
π

[
ln

∣∣∣∣4 sin
πdi
ap

∣∣∣∣]}
. (A6)

The smooth part N(t0, t, λ) of the kernel of K(λ) in (131) are
represented componentwise using (25) in the form similar to (106):

N(w1x0 + d1, w1x+ d1, λ) = N (11)(x0, x, λ)

=
2∑
p=1

εp

{
2

apbp
D

(p)
0 (λ) +

4
apbp

∞∑
n=1

D(p)
n (λ)ϕ(p,1)

n (x0)ϕ(p,1)
n (x)

+
2
π

∞∑
n=1

Q(p)
n ϕ(p,1)

n (x0)ϕ(p,1)
n (x)− 1

π
ln

∣∣∣∣∣∣∣
2 sin

πw1

2ap
[(x− x0)]

πw1

2ap
[(x− x0)]

∣∣∣∣∣∣∣
− 1
π

ln
∣∣∣∣2 sin

π

2ap
[w1(x+ x0) + 2d1]

∣∣∣∣
}

; (A7)

N(w2x0 + d2, w2x+ d2, λ) = N (22)(x0, x, λ)

= ε1

{
2

a1b1
D

(1)
0 (λ) +

4
a1b1

∞∑
n=1

D(1)
n (λ)ϕ(1,2)

n (x0)ϕ(1,2)
n (x)

+
2
π

∞∑
n=1

Q(1)
n ϕ(1,2)

n (x0)ϕ(1,2)
n (x)− 1

π
ln

∣∣∣∣∣∣∣
2 sin

πw2

2a1
[(x− x0)]

πw2

2a1
[(x− x0)]

∣∣∣∣∣∣∣
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− 1
π

ln
∣∣∣∣2 sin

π

2a1
[w2(x+ x0) + 2d2]

∣∣∣∣
}

+ ε3

{
2

a3b3
D

(3)
0 (λ) +

4
a3b3

∞∑
n=1

D(3)
n (λ)ϕ(3,2)

n (x0)ϕ(3,2)
n (x)

+
2
π

∞∑
n=1

Q(3)
n ϕ(3,2)

n (x0)ϕ(3,2)
n (x)− 1

π
ln

∣∣∣∣∣∣∣
2 sin

πw2

2a3
[(x− x0)]

πw2

2a3
[(x− x0)]

∣∣∣∣∣∣∣
− 1
π

ln
∣∣∣∣2 sin

π

2a3
[w2(x+ x0) + 2d2]

∣∣∣∣
}
, (A8)

N(w1x0 + d1, w2x+ d2, λ) = N (12)(x0, x, λ)

= −ε1

{
α

π
ln

1
|w1x0 − w2x+ (d1 − d2)|

+
2

a1b1
D

(1)
0 (λ)

+
4

a1b1

∞∑
n=1

D(1)
n (λ)ϕ(1,1)

n (x0)ϕ(1,2)
n (x)

+
2
π

∞∑
n=1

Q(1)
n ϕ(1,1)

n (x0)ϕ(1,2)
n (x)

− 1
π

ln

∣∣∣∣∣∣∣
2 sin

π

2a1
[(w2x+ d2)− (w1x0 + d1)]

π

2a1
[(w2x+ d2)− (w1x0 + d1)]

∣∣∣∣∣∣∣
− 1
π

ln
∣∣∣∣2 sin

π

2a1
[(w2x+ d2) + (w1x0 + d1)]
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}
, (A9)

N(w2x0 + d2, w1x+ d1, λ) = N (21)(x0, x, λ)

= −ε1

{
1
π

ln
1

|w1x0 − w2x+ (d1 − d2)|
+

2
a1b1

D
(1)
0 (λ)

− 1
π

ln

∣∣∣∣∣∣∣
2 sin

π

2a1
[(w2x+ d2)− (w1x0 + d1)]

π

2a1
[(w2x+ d2)− (w1x0 + d1)]

∣∣∣∣∣∣∣
− 1
π

ln
∣∣∣∣2 sin

π

2a1
[(w2x+ d2) + (w1x0 + d1)]
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}
. (A10)
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Here

ϕ(1,j)
n (x) = cos

πn(wjx+ dj)
a1

,

ϕ(i,j)
n (x) = cos

πn(wjx+ dj − a1i)
a3

, j = 1, 2, i = 2, 3, n = 1, 2, . . . .

The quantities N(di, dj , λ)−mνci,ν/(λν−λ), i, j = 1, 2, that enter
the DE in the case of a resonator with two slots cut in opposite walls
are represented as follows:

N(d1, d1, λ)− mνc1,ν
λν − λ

=
2∑
p=1

εp

{
2

apbp
D

(p)
0 (λ) +

4
apbp

∞∑
n=1

D
(p)
n,i0NM

(λ)ϕ(p,1)
n (0)

+
2
π

∞∑
n=1

Q(p)
n ϕ(p,1)

n (0)− 1
π

ln
∣∣∣∣4 sin

πd1

ap

∣∣∣∣}; (A11)

N(d2, d2, λ)− mνc2,ν
λν − λ

=
∑
p=1,3

εp

{
2

apbp
D

(p)
0 (λ) +

4
apbp

∞∑
n=1

D
(p)
n,i0NM

(λ)ϕ(p,2)
n (0)

+
2
π

∞∑
n=1

Q(p)
n ϕ(p,2)

n (0)− 1
π

ln
∣∣∣∣4 sin

πd2

ap

∣∣∣∣}; (A12)

N(d1, d2, λ)− mνc1,ν
λν − λ

= −ε1

{
2

a1b1
D

(1)
0 (λ) +

4
a1b1

∞∑
n=1

D
(1)
n,i0NM

(λ)ϕ(1,1)
n (0)

+
2
π

∞∑
n=1

Q(1)
n ϕ(1,1)

n (0)

− 1
π

ln

∣∣∣∣∣∣∣
2 sin

π

2ap
(d2 − d1)

π

2ap
(d2 − d1)

∣∣∣∣∣∣∣+ln
∣∣∣∣2 sin

π

2ap
(d2+d1)

∣∣∣∣
}

;

(A13)
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N(d2, d1, λ)− mνc2,ν
λν − λ

= −ε1

{
2

a1b1
D

(1)
0 (λ) +

4
a1b1

∞∑
n=1

D
(1)
n,i0NM

(λ)ϕ(1,2)
n (0)

+
2
π
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n=1

Q(1)
n ϕ(1,2)

n (0)

− 1
π

ln
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2 sin

π
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π

2ap
(d2−d1)
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∣∣∣∣2 sin

π

2ap
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(A14)

APPENDIX B.

M0,ν(λ) in (104) is a meromorphic function of λ with first-order poles
at the points µ

(i)
nm ({inm} �= {i0NM}, n,m = 0, 1, 2, . . . , i = 1, 2).

However, the function Fν(λ) in (104) has removable singularities at
these points. Indeed, according to (104), Fν(λ) can be represented in
the vicinity of every chosen first-order pole µp = µ

(I)
N1M1

(p = 1, 2, . . . ,
N1,M1 = 0, 1, 2, . . . , I = 1, 2) as

Fν(λ) = λν+
fν

cp(µp−λ)−1+Mν,p(λ)
= λν+

fν(µp−λ)
cp+(µp−λ)Mν,p

, (B1)

where λ �= µp,

cp = c
(I)
N1M1

= δM1

4εI
aIbI

cos
πN1d

aI
, cp �= 0, (B2)

and Mν,p has no singularity at λ = µp. Representation (B1) enables
one to extend the definition of Fν(λ) by continuity to the point µp by
setting

Fν(µp) = λν , p = 1, 2, . . . . (B3)

If cp = 0 which holds, for a fixed NI = 1, 2, . . . , at

d = dm,∗ =
aI(m+ 0.5)

NI
, m+ 0.5 < NI , m = 1, 2, . . . , (B4)

then Mν,p and Fν(λ) has no singularity at λ = µp.
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Consider the situation when two first-order poles µ1 and µ2 of
M0,ν(λ) merge, µ1 = µ2, at certain values of parameters, e.g., when
b1, a2, b2, d, ε1, ε2, and w are fixed and a1 is varied (as in [5]). Then
µ1 = µ1(a1) and µ2 = µ2(a1) and µ1(a1) = µ2(a1) = µ∗ (merge) at a
certain critical value a1 = a∗. Represent Fν(λ) as

Fν(λ) = λν +
fν

c1(µ1 − λ)−1 + c2(µ2 − λ)−1 +Mν,12(λ)

= λν +
fν(µ1 − λ)(µ2 − λ)

c1(µ2 − λ) + c2(µ1 − λ) + (µ1 − λ)(µ2 − λ)Mν,12(λ)
,

(B5)

where λ �= µk, k = 1, 2,

ck = c
(Ik)
NkMk

= δMk

4εIk
aIlbIk

cos
πNkd

aIk
, k = 1, 2, (B6)

and Mν,12 has no singularity at λ = µk, k = 1, 2. In order to extend
the definition of Fν(λ) by continuity to the points λ = µk, k = 1, 2,
and λ = µ∗, which is valid at a1 = a∗, we have to distinguish two
cases (i) c1 + c2 �= 0 (regular case) and (ii) c1 + c2 = 0 (singular
case) and use the following representations for Fν(λ) at a1 = a∗ and
µ1(a∗) = µ2(a∗) = µ∗:

Fν(λ) =


λν +

fν(µ∗ − λ)
c1 + c2 + (µ∗ − λ)Mν,12(λ)

, c1 + c2 �= 0,

λν +
fν

Mν,12(µ∗)
, c1 + c2 = 0,

(B7)

so that

Fν(µ∗) =

λν , c1 + c2 �= 0,

λν +
fν

Mν,12(µ∗)
, c1 + c2 = 0. (B8)
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