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Abstract—Based on the Kirchhoff approximation for the surfaces
with small slopes, the pulse beam wave scattering from the one-
dimensional fractal sea surface with the actual spectrum is studied.
The influence of the different fractal dimension, incident angle, and the
center frequency on the distributions of the two-frequency scattering
cross section is analyzed. The numerical result shows that there
exists the largest coherence bandwidth for the two-frequency scattering
cross section at the specular direction. The coherence bandwidth
will increase with the decrease of the fractal dimension and with the
increase of the incident angle and the center frequency, as well. It is
also found that the scattering power takes a pulse shape, but with a
pulse broadening for the incident power being δ function, this pulse
broadening is inversely proportional to the coherence bandwidth.
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1. INTRODUCTION

The study of the electromagnetic scattering from rough surfaces with
a plane wave and beam incidence has received considerable attention
for the past several decades. Among the analytical research, pulse
beam scattering is the most useful research for many applications,
such as electromagnetic measuring of the surface roughness, laser
beam scattering from the complex environment and the ocean acoustic
scattering in sonar systems. The presence of the surface roughness
affects the scattering wave by introducing the time delay and the
shape of the pulse beam. Some of the previous works of the time-
dependent scattering from the rough surface have been limited to
studying the reflected wave observed in the specular direction [1].
Up to now, there has also been a strong interest in many optical
and millimeter wave experiments for roughness sensing, utilizing
the angular and frequency correlations of the scattering wave [2–
4]. Recently, in order to obtain the information of the earth’s
surface by using SAR with interferometric technique incorporated,
many researchers have devoted themselves to the study of the
coherence bandwidth and pulse broadening of the electromagnetic
waves scattering from the rough surface with the pulse beam incidence
[5, 6]. A. Ishimaru et al., presented analytical expressions for the two-
frequency mutual coherence function and angular correlation function
of the scattered wave from one-dimensional rough surfaces by the first
and second Kirchhoff approximation [7, 8]. The pulse broadening and
backscattering enhancement are also discussed.

In this paper, based on the theoretical result of the pulse beam
scattering from the rough surface proposed by A. Ishimaru, we focus
our investigation on the pulse beam wave scattering from the one-
dimensional fractal sea surface at millimeter wave frequency with
the actual spectrum of the sea considered. The distributions of the
two-frequency scattering cross section and the scattering power with
different fractal dimension, incident angle, and center frequency are
analyzed. The dependence of the coherence bandwidth and the pulse
broadening on the fractal dimension and incident angle are discussed
in detail.

2. FORMULATION OF THE TWO-FREQUENCY
SCATTERING CROSS SECTION AND SCATTERING
POWER FROM THE ROUGH SURFACE

Consider an incident pulse beam Ei(t) impinging on a one-dimensional
rough surface characterized by the function z = ζ(x), extending from



Two-frequency scattering cross section and pulse broadening 223

x = −L/2 to x = L/2. We assume the incident center frequency
is f and the incident angle θi. Based on the first-order Kirchhoff
approximation for the surfaces with small slopes [7, 9] (in this case
the rms slopes s =

√
2δ/l < 0.5 and the correlation length l ≥ λ,

where δ is the rms height of the surface), the scattering field in the far
region can be expressed as:

Es = k cos θs

√
2π
kR

exp(ikR− iπ/4)T (Ks,Ki) (1)

where k = 2π/λ is the incident wave number, θs is the scattering
angle, R is the distance from the origin to the observation point and
the transition matrix T is given by [7, 8]:

T (Ki,Ks) =
F1

2π

∫
R1 exp [−i(Ks −Ki) · r1] dx1 (2)

Here R1 is the local Fresnel reflection coefficient at r1 = x1x̂ + ζ1ẑ.
The incident vector Ki and the scattering vector Ks, and F1 can be
written as:

Ki,s = k sin θi,sx̂± k cos θi,sẑ, F1 =
1− sin θi sin θs + cos θi cos θs

(cos θi + cos θs) cos θs
(3)

where “±” indicates the incident case (subscript i) and the scattering
case (subscript s), respectively. The two-frequency scattering cross
section per unit area of the rough surface is defined as [7]:

σ0(Ki,Ks;K′i,K′s) = σ0(ω, ω′) = (R/L) < EsE
′∗
s > (4)

where
K′i,s = k′ sin θ′i,sx̂± k′ cos θ′i,sẑ (5)

In the above expression, k = 2πf/c = ω/c and k′ = 2πf ′/c = ω′/c.
Substituting Eq. (1) and Eq. (2) into Eq. (4), we obtain

σ0 = 2π
√
kk′ cos θs cos θ′s(< T (ω)T ′∗(ω′) > /L) exp[i(k − k′)R] (6)

where <T (ω)T ′∗(ω′)> is the two-frequency mutual coherence function.
It is usually denoted by Γ(ω, ω′). In the Kirchhoff approximation for
the rough surface with small slopes, R1 can be approximated by the
Fresnel reflection coefficient for a flat surface, it is a constant for a
fixed incident angle and can be taken outside the integral in Eq. (2),
thus Eq. (2) can be rewritten as:

T = H1

∫
exp(−iv · r1)dx1 (7)
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where H1 = F1R1/(2π), v = Ks −Ki = vxx̂ + vz ẑ, vx = k(sin θs −
sin θi), vz = k(cos θs + cos θi). Based on the Kirchhoff approximation
of the rough surfaces with small slopes, the two-frequency mutual
coherence function is found to be [7, 8]

Γ(ω, ω′) = < T (ω)T ′∗(ω′) >

= H1H
′
1

∫
dx1

∫ [
< exp(−iv · r1 + iv′ · r′1) >

− < exp(−iv · r1) >< exp(−iv′ · r′1)
]
dx′1 (8)

If the height of ζ(x) is assumed to satisfy the Gaussian distribution,
we have [1, 7]

< exp(−ivzζ1+iv′zζ
′
1) >=exp

{
−

[(
v2
z + v′2z

)
δ2/2− vzv′z < ζ1ζ

′
1 >

]}
(9)

where < ζ1ζ
′
1 >=< ζ(x1)ζ(x′1) >= G(x1 − x′1) = G(xd) is the

auto-correlation function of ζ(x). Making use of the coordinates
transformation for the integral variable x1 and x′1 by xd = x1 − x′1,
xc = (x1 + x′1)/2, we get the following identities [7, 8]:∫

dx1

∫
dx′1 =

∫
dxd

∫
dxc (10a)

exp(−ivxx1 + iv′xx
′
1) = exp [−i(vdxc + vcxd)] (10b)

where vd = vx − v′x = k(sin θs − sin θi) − k′(sin θ′s − sin θ′i), vc =
(vx + v′x)/2. Substituting Eq. (8)–Eq. (10) into Eq. (6), the two-
frequency scattering cross section can be simplified as follows:

σ0 = 2π
√
kk′ cos θs cos θ′sH1H

′
1φ1φ2 exp

[
i(k − k′)R

]
(11)

where

φ1 =
1
L

∫ ∞
−∞

exp
(
−πx2

c/L
2
)

exp(−ivdxc)dxc = exp
(
−v2

dL
2/4π

)
(12)

φ2 =exp
[
−(v2

z + v′2z )δ2/2
] ∞∑
n=1

(vzv′zδ
2)n

n!

∫ ∞
−∞

[G(xd)]
n exp(−ivxxd)dxd

(13)
When k = k′, θi = θ′i, θs = θ′s in Eq. (11), this equation will reduce

to the conventional Kirchhoff approximation expression of the bistatic
scattering cross section for the case of the continued wave incidence.
Once the two-frequency mutual coherence function Γ(ω, ω′) of Eq. (8)
is obtained, the scattering power Ps(t), often encountered and used in
the measurement, can also be obtained. As far as the incident pulse



Two-frequency scattering cross section and pulse broadening 225

beam is concerned, the incident power can be expressed as the Fourier
transform:

Pi(t)=< Ei(t)E∗i (t) >=
1

(2π)2

∫∫
Ei(ω)E∗i (ω

′) exp(−iωt+ iω′t)dωdω′

=
1
2π

∫
Pi(ωd) exp(−iωdt)dωd (14)

where

Pi(ωd) =
∫
Pi(t) exp(iωdt)dt =

1
2π

∫
Ei(ω)E∗i (ω

′)dωc (15)

Here we also used the variable replaced by ωd = ω − ω′, ωc =
(ω + ω′)/2. Therefore, the scattering power can be written as the
following:

Ps(t)=<Es(t)E∗s (t)>=
1

(2π)2

∫∫
Γ(ω, ω′)Ei(ω)E

∗
i (ω
′)exp(−iωdt)dωddωc

=
1
2π

∫
Γ(ωd)Pi(ωd) exp(−iωdt)dωd (16)

In the above derivations, the transformation of equation Es(ω) =
T (ω)Ei(ω) has been utilized [7, 8]. From Eq. (15) and Eq. (16), it
is found that after obtaining the calculating result of Γ(ω, ω′), the
scattering power can be acquired with the incident power already
known. If Pi(t) is assumed to be the δ function, i.e., Pi(t) = δ(t),
then from Eq. (15) we have Pi(ωd) = 1. Hence according to Eq. (16),
the scattering power Ps(t) is just the Fourier transform of the two-
frequency mutual coherence function.

3. NUMERICAL RESULT FOR THE FRACTAL SEA
SURFACE

In this section we numerically calculate the electromagnetic scattering
from the fractal sea surface with the pulse beam wave incidence. The
analytical expression of the fractal model for the rough sea surface is
represented as follows [10, 11]:

ζ(x)=
√

2δ [D(2−D)]1/2

[1− (D − 1)2N ]1/2

M∑
m=1

WPM (κm)
N2∑

n=N1

(D−1)n sin (KY nκmx+ φn)

(17)
where δ is the standard rms height of the fractal surface and D(1 <
D < 2) represents the box-counting fractal dimension of the surface,
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Figure 1. The distribution of σ0 with D = 1.5, θi = 30◦, f = 75 GHz.

a larger D results in a rougher surface. K is the fundamental
wavenumber and b is the fundamental spatial frequency. N(N =
N2 −N1 + 1) and M are the numbers of tones and φn is a phase term
that has a uniform distribution over the interval [−π, π]. PPM (f) is the
Pierson-Moskowitz (PM) spectrum of the sea surface, given by [12]:

WPM (κ) =
αpg

2

(2π)4κ5
exp

[
−1.25

(
κPM
κ

)4
]

(18)

where the Philips constant αp = 0.0081, the frequency κPM =
0.13g/uw, uw is the mean wind speed over the water, g = 9.8 m/s2,
and {κm}Mm=1 are the frequency points at which the Pierson-Moskowitz
spectrum is uniformly sampled. This fractal sea model has already
been proved to satisfy the Gaussian distribution.

We first calculate the two-frequency scattering cross section σ0 of
the fractal sea surface by Eq. (11) with the pulse beam incidence at
millimeter wave frequency. In performing the calculation, θi = θ′i,
θs = θ′s, the incident center frequency is set to be 75 GHz, the
parameters in the rough fractal model of Eq. (17) are given by b =

√
e,

K = 1/(2λ), uw = 8 m/s, δ = 0.5λ, N1 = 0, N2 = 9, M = 30, the
dielectric constant εr = (48.3, 34.9) [9] and the illuminating distance
L = 40λ.

In Fig. 1, the distribution of the two-frequency scattering cross
section vs different frequency difference ∆f = f ′ − f and scattering
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angle θs is depicted for HH polarization (VV case can be evaluated
in a similar way) with incident angle θi = 30◦ and fractal dimension
D = 1.5. It should be pointed out that for the case of D = 1.5, the
correlation length can be computed and the result is l = 2.3λ [13], thus
the corresponding rms slope s = 0.31. Hence the conventional scalar
first-order Kirchhoff approximation with small slopes of the surface is
valid for this case. It is readily found that the two-frequency scattering
cross section σ0 has the maximum value when f = f ′(∆f = 0) for
the same scattering angle. With increasing the frequency difference
∆f, σ0 will decrease from the peak value to zero at a different rate
for the different scattering angle. It is observed that σ0 decreases at a
more gentle rate in the specular direction, and the amplitude of σ◦ and
the coherence bandwidth (the corresponding ∆f for σ0 decreases from
the maximum value to zero [7]) also have the largest values. When the
scattering direction is off the specular direction, σ0 will decrease rapidly
with increasing ∆f , and the coherence bandwidth will also decrease.
Fig. 2 shows the distribution of σ0 for different ∆f and different θs, but
with fractal dimension D = 1.3 (the corresponding l = 2.6λ, s = 0.27),
the other parameters are the same as those in Fig. 1. It is shown that
the coherence bandwidth increases at the specular direction for the
small value of D compared with that in Fig. 1.

Fig. 3 also illustrates the distribution of σ0 with D = 1.5 but
with the incident angle θi = 60◦. Analogous to the analysis of Fig. 1,
there also exists the largest coherence bandwidth at the specular
direction. Fig. 4 presents the distribution of σ0 with the center
frequency f = 50 GHz, and D = 1.5, θi = 30◦. It is obvious that both
of the amplitude of σ0 and the coherence bandwidth will decrease with
the decrease of center frequency compared with those in Fig. 1.

In order to further check the formulation of the two-frequency
scattering cross section given in section 2, we consider the calculated
behavior of the scattering angular distribution of σ0 with ∆f = 0 (f =
f ′) for different D and θi in Fig. 5. In this case, the result of σ0 will
reduce to that of the conventional Kirchhoff approximation with the
continued wave incidence. In this figure, the comparison of the present
calculations with the Monte Carlo simulation for σ0 is also given with
θi = 30◦, D = 1.5. In performing the calculation of the Monte Carlo
technique [14], the number of the sampling surfaces is set to be 100,
and the sampling number of each surface is 2048. It is obvious that
the two methods are in fairly good agreement. From Fig. 5, we can
also observe that the distribution of σ0 will be different for different D
and θi, and for the same fractal dimension and scattering angle, the
larger the incident angle, the smaller the value of σ0 will be. Fig. 6
shows the comparison of the distribution of σ0 with varying of the
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Figure 2. The distribution of σ0 with D = 1.3, θi = 30◦, f = 75 GHz.
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frequency difference ∆f at specular direction for different D and θi,
the center frequency f = 75 GHz. Compared with the results shown
in Fig. 1–Fig. 3, it can be seen that the amplitude of σ0 and the
coherence bandwidth decrease with increasing D for the same θi and
∆f , but with increasing the incident angle, the coherence bandwidth
will increase for the same fractal dimension.

Another point worth noting is the characteristic of the scattering
power with the pulse beam incidence and our effort is focused on the
scattering pulse shape with the time delay. As was mentioned in the
theoretical analysis presented in section 2, if we assume Pi(t) = δ(t),
from Eq. (16), it is already known the scattering power Ps(t) will be
the Fourier transform of the two-frequency mutual coherence function.
Fig. 7 presents the dependence of the scattering power distribution on
the time delay and scattering angle with D = 1.5, θi = 30◦, f =
75 GHz. It is readily observed that the shape of the scattering power
is not a δ function, but a pulse with a finite width in the near vertical
direction. This phenomenon is just the pulse broadening for the
scattering power described by A. Ishimaru. It also shows consistency
with the previous experiment results [2, 3]. We can also find that
the maximum of the scattering power does not appear in the specular
direction, and for the fixed scattering angle, Ps(t) decreases from its
maximum value (at t = 0) to zero at a different rate.

Fig. 8 shows the scattering power as a function of time delay with
different incident angle and fractal dimension at the specular direction.
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Compared with the curves given in Fig. 6, it is found that for the same
incident angle, with increasing the fractal dimension, the amplitude
of Ps(t) and the pulse broadening increase, whereas the amplitude of
σ◦ and the coherence bandwidth decrease (shown in Fig. 6). For the
same fractal dimension and the small the incident angle (corresponding
to the small coherence bandwidth), there also exist a large value for
both Ps(t) and the pulse broadening at the specular direction. Hence
we conclude that the small coherence bandwidth will correspond to
the large pulse broadening. In other words, this pulse broadening is
inversely proportional to the coherence bandwidth, this result is also
valid for the scattering power at the non-specular direction.

4. CONCLUSIONS AND DISCUSSIONS

In summary, this paper presents the pulse beam wave scattering
from the one-dimensional fractal sea surface at the millimeter wave
frequency with the actual spectrum considered. According to the
Kirchhoff approximation for the surfaces with small slopes given by
A. Ishimaru, the analytical solution for the two-frequency cross section
is derived for the fractal sea surface with Gaussian distribution. Under
the condition of ∆f = 0, the two-frequency cross section can be
reduced to the result of the conventional Kirchhoff approximation with
the continued wave incidence. Calculations were carried out to examine
the influence of the different fractal dimension, incident angle, and
center frequency on the distributions of the two-frequency scattering
cross section. The numerical result shows that there exists the largest
coherence bandwidth for the two-frequency scattering cross section at
the specular direction. The coherence bandwidth will increase with the
decrease of the fractal dimension and with the increase of the incident
angle and the center frequency. It is also found that the scattering
power takes a pulse shape, but with a pulse broadening for the incident
power being δ function, this pulse broadening is inversely proportional
to the coherence bandwidth. It should be noted that the conclusions
obtained are valid for both HH and VV polarizations, but our solution
is limited to the approximation for surfaces with small rms slope (i.e.,
surfaces with small and moderate fractal dimension). As the fractal
dimension exceeds 1.8 (in this case, l = 1.4λ, s = 0.51), the rms
slope will also exceed 0.5, the correlation length will be gradually
less than the incident wavelength, and the second-order Kirchhoff
approximation should be included to deal with the scattering problem.
Further investigation about the two-frequency cross section and the
pulse broadening of the scattering power will be necessary for the case
of the actual two-dimensional fractal sea surface.
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