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Abstract—The extension of C method, combined with idea of
Tikhonov’s regularization is proposed. The regularizing algorithm for
numerical solution of electromagnetic wave diffraction by the boundary
of dielectric media is developed. This algorithm is based on the solution
of the system linear algebraic equations of C method as subject of
regularizing method of A. N. Tikhonov. The numerical calculations
of scattered field in the case of E-polarization are presented. The
efficiency and reliability of the method for the solution of the problems
of boundary shape reconstruction have been proved and demonstrated
numerically for several situations.
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1. INTRODUCTION

Mathematical modeling for boundaries between two media (terrain
surface, ocean) has a large history and bibliography [1–4].

An efficient remote terrain and ocean monitoring requires solving
of the following problems. The first, direct one, is the development of
electromagnetic models of electromagnetic waves scattering by surfaces
of various media. The second, inverse one, is based on these models
and has to provide estimation and remote control of the relief of ocean
and earth, namely their properties relying on information about certain
characteristics of scattered electromagnetic fields.

It is clear that an efficient and robust solution to direct problem
mentioned above is of principal importance. Although huge body
of papers treating this complicated problem, there is evident lack of
solutions which are based on rigorous approaches.

We propose here the robust and clear in implementation method
that present certain modification of known C method [5–10] for solving
the problem of electromagnetic wave scattering by rather arbitrary
shaped surface. This approach makes a reliable base for solution of
recognition problem: the reconstruction of surface profile and material
parameters of media from known data of scattered electromagnetic
field.

The major objective of present paper is consideration of the
principal methodological issues, which can testify an accuracy and
efficiency of the solution, and serve as keys to the successful utilization
of the method suggested in real life experiments and devises. The
preliminary study demonstrates high performance and reliability of
the approach for rather wide scope of problems of material parameters
and surface relief recognition and reconstruction.

2. DIRECT PROBLEM

We consider two dimensional diffraction problem for time-harmonic
E polarized (electric field density vector is parallel to axis 0x) plane
waves by the arbitrary profile boundary of two media with relative
permittivities ε1 and ε2 and permeability µ (Fig. 1). The boundary
line between two media is described by function z = a (y) with period
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Figure 1. The profile of boundary between two media.

d, maximal deviation from axis 0y is equal to h (see Fig. 1). Incident
plane wave propagates in the media with permittivity ε1 with angle of
incidence ϕ, which is counted as shown in Fig. 1. Time factor is chosen
as e−iωt. The excitation fields has the form

H iy = Aei
2π
λ

√
ε1µ(y sin(ϕ)−z cos(ϕ))

H iy = −
√
ε1
µ

cos (ϕ)Eix

H iz = −
√
ε1
µ

sin (ϕ)Eix

Here λ is a wavelength in vacuum.
It is necessary to find out the diffraction filed that has to meet

fallowing requirements:

1. Maxwell equations;
2. Radiation conditions at infinity;
3. Transparency boundary conditions, requiring continuity of

tangential components of total field in the boundary;
4. The quasi periodic conditions (Floquet conditions);
5. The condition of energy boundness in any finite domain.

It can be proved, (see, for example [11] and [12]) that conditions 1–
5 guarantee the unique-ness of the diffraction problem solution. For
further convenience we introduce the following variables:

z̄ = κ̄z, ȳ = κ̄y, κ̄ = 2π/d.
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Then Maxwell equations for diffraction field acquire the form


∂Esxn
∂z̄

= ikµHsyn

−∂E
s
xn

∂ȳ
= ikµHszn

−ikεnEsxn =
∂Hszn
∂ȳ

−
∂Hsyn
∂z̄

n = 1, 2; (1)

where κ = d/λ, values n = 1 and n = 2 refer to the first and second
media. The equation defining the boundary between media in new
variables can be presented in the following form

z̄ = A0a (ȳ) , A0 = 2πh/d,

where a (ȳ) is a periodic function with period equals 2π such that
0 ≤ a (ȳ) ≤ 1.

For the sake of simplicity we consider the case ϕ = 0. All
derivations for the case ϕ �= 0 can be obtained in the similar way.

Subjecting diffraction field to boundary conditions, we derive

−iκ1e
−iκ1A0a(ȳ) +

∂Esx1

∂z̄
−A0ȧ (ȳ)

∂Esx1

∂ȳ
=

∂Esx2

∂z̄
−A0ȧ (ȳ)

∂Esx2

∂ȳ

e−iκ1A0a(ȳ) + Esx1
= Esx2

(2)

where κ1 = κ
√
ε1µ. Notation like ȧ (y) means here and below the

derivation in respect to the argument.
Following the conventional C method, we introduce new variables

v = ȳ, u = z̄ −A0a (ȳ), which transform equation (1) into the form


(
∂

∂v
−A0ȧ (v)

∂

∂u

)
G1n +G2n = 0,

−
(
∂2

∂u2
+ κ2εnµ

)
G1n +

(
∂

∂v
−A0ȧ (v)

∂

∂u

)
G2n = 0,

n = 1, 2;

(3)
where G1n = Esxn, G2n = iκµHszn. The equation, describing boundary,
simplifies itself into u = 0 and transforms the boundary condition into
equations

−iκ1e
(−iκ1A0a(v)) +

(
1 +A2

0ȧ
2
) ∂G11

∂u
−A0ȧ

∂G11

∂v

=
(
1 +A2

0ȧ
2
) ∂G12

∂u
−A0ȧ

∂G12

∂v
(4)
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e(−iκ1A0a(v)) +G11 (v, 0) = G12 (v, 0)

The further derivations are connected with transformation of (3)
and (4) into infinite system of linear algebraic equations with respect
to unknown coefficients, which are the coefficients of expansions of
functions G11, G12 over the system of eigen functions of relevant
spectral problems of C method.

3. SPECTRAL PROBLEM OF C-METHOD

We are seeking for the solutions of (3) having the form

Gn = eiρnugmn (v) ,m, n = 1, 2 (5)

where ρn are the spectral parameters of C method. After substitution
of (5) into (3) we arrive to

{
ġ1n − iρA0ȧ (v) g1n + g2n = 0

ġ2n − iρA0ȧ (v) g2n +
(
ρ2n − κ2εnµ

)
g1n = 0

n = 1, 2 (6)

It is easy to see that functions g1n and g2n satisfy the equation

−g̈mn + 2iρA0ȧġmn +
[
iρA0ä+ ρ2A2

0ȧ
2 + ρ− k2εnµ

]
gmn = 0 (7)

As a solution to (3) has to be periodic function with respect to variable
v, the periodic condition is to be fulfilled by functions gmn (v):

gmn (0) = gmn (2π) , ġmn (0) = ġmn (2π) (8)

Hence, it is necessary to find out the values of spectral parameter p
providing non trivial solutions to equation (7) meeting the periodicity
condition (8). The solution to this problem can be constructed in the
following way. We shall seek for functions gmn (v) as an expansion to
Fourier series:

gmn (v) =
∞∑

p=−∞
Fmnp eipv (9)

Substituting (9) into (6) we obtain the infinite system of equations
that we can present in matrix form

X −An (ρ)X = 0 (10)

where
X =

∥∥∥∥ F1n

F2n

∥∥∥∥ , Fnm =
(
Fnmp

)∞
p=−∞
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An (ρ) =
[
A (ρ) −iD
iγ2
nD A (ρ)

]
, A (ρ) = ‖Aqp‖∞q,p=−∞

D = ‖Dqp‖∞q,p=−∞ , Dqp =




1, p = q = 0
δqp
p
, p �= 0

and δqp is Kroneker delta, γ2
n = κ2εnµ − ρ2. The entries Aqp are

expressed via Fourier coefficients of function ȧ (v):

Aqp =




1, p = q = 0

ρA0ȧ−p, q = 0

ρA0
ȧq−p
q
, q �= 0

Matrices A (ρ) and D produce compact operators in space l2,
which are analytically depending on spectral parameter p. Thus,
matrices An (ρ) from (10) also produce compact operator in space
l2 × l2, and each An (ρ) is analytical operator-function of parameter
p.

It can be proved that for ρ �= ±
√
κ2εnµ− p2, where p =

0,±1,±2..., the bounded operator (I−An (ρ))−1 exists. The set of
values p, providing the existence of nontrivial solutions to equation
(10), is countable, isolated and of finite multiplicity. This follows
from Fredholm’s theorem [13] about analytical operator-functions. For
numerical solution of (10) we applied truncation method. This is
correct for operator-function An (ρ) is compact.

Now, having values of spectral parameter p and corresponding to p
eigen vectors X, one can construct the functions eiρugmn (v), satisfying
the system of equations (3).

4. THE SOLUTION TO THE DIFFRACTION PROBLEM.
REGULARIZING ALGORITHM

As it has been stated above, the set of spectral parameter
corresponding to both media (n = 1, 2) is not more than countable
and isolated set.

Let Un = (ρmn)
∞,
m=1 n = 1, 2 is the set of spectral parameters such

that Re (ρm1) + Im (ρm1) ≥ 0 and Re (ρm2) + Im (ρm2) ≤ 0. Then,
according to C-method, functions G11 and G12, describing diffraction
fields in the first and second media correspondingly, can be presented
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in the form
G11 =

∑
m∈V1

Cm1e
iρm1ugm1(ν), u ≥ 0

G12 =
∑
m∈V1

Cm2e
iρm2ugm2(ν), u ≤ 0

(11)

Note, that the choice of sets Un, n = 1, 2 is dictated by necessity
for diffraction field to meet radiation conditions in corresponding
domains - half spaces u ≥ 0 and u ≤ 0 respectively. Now, we substitute
expansion (11) into boundary conditions (4), and accounting (9), we
obtain the finite system of linear algebraic equations with unknowns
(Cnm)∞m=−∞ , n = 1, 2,∑

m∈U1

Fm1
n Cm1 −

∑
m∈U2

Fm2
n Cm2 = −Ln (−A0κ1) (12)

∑
m∈U1

Gm1
n Cm1 −

∑
m∈U2

Gm2
n Cm2 = κ1Ln (−A0κ1)

n = 0,±1,±2 . . . (13)

Here

Gmpn =
κ2εpµ− n2

ρmp
Fmpn + nA0

+∞∑
s=−∞

ȧn−sF
mp
s

Ln(γ) =
1
2π

2π∫
0

exp{iγa(ν)− inν}dν (14)

ȧn =
1
2π

2π∫
0

ȧ(ν) exp{−inν}dν

We can also rewrite (12) in matrix form:

Fx = B, F =
[
F1 −F2

G1 −G2

]

Fp = ‖Fmpn ‖∞m=1,n=−∞ , Gp = ‖Gmpn ‖∞m=1,n=−∞

B =
∥∥∥∥ B1

B2

∥∥∥∥ , B1 = (−Ln (−κ1A0))
∞
n=−∞

B2 = −κ1B1, x =
∥∥∥∥ C1

C2

∥∥∥∥

(15)

Analyses of matrix entries of (12) made it clear that operator
equation (14) is an equation of the first kind. That is why the direct



136 Chandezon et al.

usage of truncation method for numerical solution of (14) is undesirable
because of well known instability problem arising. That is why some
regularizing procedure is absolutely necessary. We suggest to solve
operator equation (14) applying Tikhonov’s regularization [14].

The formal schema of regularizing procedure includes the following
steps. Owing to the fact that original diffraction problem has unique
solution, equation (14) has unique solution also. Suppose that instead
of explicit values of F and B we know their approximate values F̃ and
B̃, namely

sup
‖x‖=1

∥∥∥F̃ x− Fx∥∥∥ ≤ h, ∥∥∥B̃ −B∥∥∥ ≤ δ
where h and δ are known input data of the algorithm.

As F̃ and B̃ we can take corresponding truncated matrixes in
(12). Tikhonov’s regularization method suggest the search of elements
xα providing minimum to smoothing functional

Φα (xα) =
∥∥∥F̃ xα − B̃∥∥∥2

+ α ‖xα‖2 (16)

where α > 0 is regularizing parameter, which is to be defined from the
condition ∥∥∥F̃ xα − B̃∥∥∥2

= 2
(
h ‖xα‖2 + δ

)
(17)

As a norm ‖. . .‖ in (15) one can choose the norm of corresponding
finite-dimensional space. With such a choice the search of xα from
(15) is equivalent to the solution of the equation

αxα + F̃ ∗F̃ xα = F̃ ∗B̃ (18)

Here F̃ ∗ is the conjugate to F̃ operator.
Equation (17) has been solved numerically by means of truncation

method. Parameter α has been chosen from condition (16). Numerical
experiments proved high efficiency and considerable enforcing of
stability of the suggested method of the solution to (14).

5. INVERSE PROBLEM

The developed above method of the solution to the direct diffraction
problem and corresponding numerical algorithm form the efficient
background for the following inverse problem.

The input data for the problem are complex amplitudes R =
(Rn (λ))Nn=−N of reflected propagating waves, λ is a wave length. We
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suppose that this data are known in certain range [λ1, λ2]. Besides the
period of boundary shape and dielectric parameters of media are also
known. It is necessary do find out by these input data the function,
defining the boundary of two media. Let a = (an)

∞
n=−∞ are Fourier

coefficients of this boundary function. The solution
of operator equation (17) gives the mapping that associates set

of a = (an)
∞
n=−∞ with set of complex amplitudes R = (Rn (λ))Nn=−N .

Thus, the non linear operator

F (a, λ) = R (λ) , λ ∈ [λ1, λ2] (19)
is defined on certain set of vectors DF ⊂ l2. Consequently, the

mathematical posing of inverse problem consists in finding out the
solution to (18) in such sense that residual F (a, λ)−R (λ) is minimized
in relevant metric (see (20) ). Having found out the Fourier coefficients
a = (an)

∞
n=−∞ from (18), we can derive the function, describing the

boundary between two media. This can be done by means of stable
procedure that is the summation of Fourier series with approximate in
l2 space metric coefficients [15].

Formally, the scheme of solution may be outlined as follows. Let
Y (λ) is the set of operator F values. Introduce on Y (λ) the norm
according to the following formula

‖R (λ)‖21 =
N∑
−N
|Rn (λ)|2 cosϕn

cosϕ
(20)

Here the following notations are used: ϕn are angles of diffracted field,
ϕ is angle of the incident field. Consider the functional that is given
in domain DF of operator F definition:

Φ (a) =
P∑
m=1

∥∥∥Ren (λm)−RMn (λm)
∥∥∥2

1
+ γ

Q∑
n=−Q

|an|2
(
1 + n2R

)
(21)

where γ > 0 is the parameter of regularization, R = 1 (in general,
R ≥ 1 is a parameter of the functional), λm ∈ [λ1, λ2] , a (y) =
Q∑

n=−Q
ane

iny, . Vector ay = (aγn)
Q
n=−Q, which provides the functional

(20) with minimum, is considered to be a solution to (18). Norm ‖. . .‖1
is defined by formula (19). Vectors Re = (R (λm))Pm=1 are input data
of inverse problem. They can be found from solution of direct problem
(12) with given vector ay = (aγn)

Q
n=−Q.

The search of vector ay is constructed by means of regularized
quasi Newton’s method with step adjustment, using only first
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derivatives. The minimum residual method (see [14,15]) is applied for
the choice of regularizing parameter γ that is in compliance with given
level of noise in input data Re (λm) = (Ren (λm))Nn=−N . On the bases of
the approach developed, the numerical algorithms for the solving (18)
and (19) have been implemented.

6. NUMERICAL EXPERIMENTS

Here we present several numerical illustrations for test problems, which
have been performed by suggested approach and the corresponding
algorithm implementation. Relying on the solution to equation (17),
we simulated input data Re (λm) = (Ren (λm))Nn=−N , m = 1, 2 . . . P
for two boundaries between media. We have chosen two types of
boundary profile:

a1 (y) = h

[
0.5 +

π3y

6d

(
2y
d
− 1

) (
1− y

d

)]

and

a2 (y) = h
[
0.375 + 0.25 sin

(
2πy
d

)
+ 0.125 cos

(
4π
d

)]

that are periodically continued from interval [0, d] onto interval
(−∞,+∞). Parameters d and h feet restriction 2πh

d ≤ 1. The
wavelength of incident plane E polarized wave was varying within the
range 0.5 ≤ d

λ ≤ 3.5. Permittivity of the first medium has been chosen
as ε1 = 1 and of the second one as ε2 = 2.25. Permeability of both
media is µ = 1. Functions a1 (y) and a2 (y) are chosen for they belong
to two essentially different classes. Namely, function a2 (y) is a finite
series of its Fourier coefficients. In the contrary, function a1 (y) is an
infinite Fourier series, which Fourier coefficients have algebraic type of
decaying only.

Results of numerical tests are presented in Fig. 2 and Fig. 3. Solid
lines correspond to the ex-act functions a1 (y) and a2 (y). Dotted
lines are the graphs of functions aR1 (y) and aR2 (y) that have been
defined via input data Re (λm) = (Ren (λm))Nn=−N according to above
described algorithm. As they almost coincide with graphic accuracy,
the deviations h−1

(∣∣∣a1 (y)− aR1 (y)
∣∣∣) and h−1

(∣∣∣a21 (y)− aR2 (y)
∣∣∣) are

presented in the same figures. As it is clearly seen, the maximum
absolute value of deviation is less than 10−3 for function a2 (y) and
10−2 for a1 (y). It worth to be emphasized that maximum absolute
value of deviation essentially decreases with value of points P increases
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Figure 2. Reconstruction of boundary shape for the profile given by
function a1(y) = h

[
0.5 + π3y

6d

(
2y
d − 1

) (
1− y

d

)]
for different values P

of given incident waves: P = 6 (Fig. a) and P = 36 (Fig. b), where
ε2 = 2.25, 0.5 ≤ d/λ ≤ 3.5, 2πh/d = 0.4.
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Figure 3. Reconstruction of boundary shape for the profile given
by function a1(y) = h

[
0.375 + 0.25 sin

(
2πy
d

)
+ 0.125 cos

(
4π
d

)]
for

different values P of given incident waves: P = 6 (Fig. a) and P = 36
(Fig. b), where ε2 = 2.25, 0.5 ≤ d/λ ≤ 3.5, 2πh/d = 0.4.

(we remind that P is a number of values of incident plane wave
wavelengths, for which the input data Re (λm) , m = 1, 2 . . . P have
been calculated).

Basing on the numerical experiments have been performed and
partially illustrated here, we can conclude that the approach suggested
enables the reconstruction of the boundary functions of two media.
When the relative level of noise in input data is about 10−3, the relative
error of the profile reconstruction is less than 10−2.
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7. CONCLUSION AND PERSPECTIVE

The extension of C method is suggested. It is made in two main
directions. The first one is concerning direct two dimensional problem
of time-harmonic plane wave diffraction by periodic boundary between
two dielectric media. The key new step is Tikhonov’s regularization
involved in solution procedure. Such involving has given essential
increasing of the stability of canonic C method.

The second extension is based on the first one, and is devoted to
new area of C method application, namely, to inverse and ill posed
problems of various media’s boundary recognition and reconstruction.
This extension, as well as the first one, includes ideas of Tikhonov’s
regularization as essential part of the method.

Numerical tests proved the efficiency and rather good stability
of new algorithms suggested. A very similar technique can be used
for reconstruction of material parameters of the media (which were
supposed to be known in the present paper). The detailed description
of such aimed algorithms will be the topic of our special publication.

Thus, the methods developed herein and, especially, the ideas
lying in their background are looking very promising for the solution
of wide area of applied problems of remote sensing and monitoring of
earth and ocean.
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