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Abstract—In this paper, two models for the solution of the
electromagnetic bistatic scattering from sea surface are suggested.
A rigorous formalism leading to weakly singular integral equations
is presented, as well as the surface impedance approximation for
low penetrable media and the beam simulation method to synthesize
incident beams with arbitrary size. This rigorous integral method is
used to test first order approximations, and it is shown that the Small
Slope Approximation is very accurate in predicting the scattering cross-
section from the high spatial frequencies of the sea surface. This result
led us to suggest an improvement of the classical two-scale model,
consisting in replacing the small perturbation theory by the small slope
approximation. This change allows the cut-off spatial frequency to be
shifted so that the use of geometrical Optics is restricted to the large
scales.
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1. INTRODUCTION

Several applications, like passive remote sensing of ocean brightness
temperature [1–3] or the use of GPS signals for active remote
sensing [4], require the estimation of the bistatic radar cross-
section. In addition, to get significant results about ocean salinity
(or soil moisture), the brightness temperature must be estimated
with a very high accuracy [5, 6]. Clearly, there is a need for
accurate electromagnetic solvers devoted to bistatic scattering from
natural surfaces. Even in oceanography, the study of hydrodynamic
phenomena for a better description of the sea surface could
take advantage of simulated remote sensing experiments with no
electromagnetic bias. This work should permit one to improve the
interpretation and the inversion of microwave remote sensing data from
the ocean, the quality of meteorological forecasting and the analysis of
exchanges at the air-sea interface.

Thanks to recent improvements of both numerical methods and
computers performances, rigorous solution of the three-dimensional
electromagnetic scattering from randomly rough surfaces can now be
computed. A recent review on this topic has been published in [7]. In
time harmonic regime, as far as both the upper and the lower media
can be considered as homogeneous, the most efficient methods rely on
a boundary integral formalism [8–13]. These methods only differ in the
choice of the integral equation and in the way it is numerically solved.

In the microwave frequency range, for given salinity and
temperature, sea water can be assumed to be homogeneous. In other
words, its electromagnetic properties can be described by a complex
permittivity, which also depends on the frequency. Therefore, solving
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a surface scattering problem from the sea is of same complexity as from
any homogeneous dielectric material, which requires the solution of a
set of two coupled integral equations, involving both the electric and
magnetic surface current densities. In addition, both the real part and
the imaginary part of the permittivity of sea water in the microwave
domain is large. Consequently, sea water has a small skin depth, and
Green’s function in the lower medium exhibits a fast decrease. Such
a behaviour can only be captured with the help of a short sampling
path, leading to huge linear systems.

To reduce memory requirements and speed up computations, it
is assumed that the integral relationship between the electric and
magnetic surface currents can be accurately approximated by a local
relationship [14]. This kind of approximation, often referred in the
literature to as an impedance approximation, or impedance boundary
condition, has already been applied to the ocean surface [15, 3]. It
has also proved to be very accurate for metallic surfaces in Optics
[16], which present a damping rate similar to that of sea water in the
microwave domain. It is numerically efficient because the number of
unknowns is divided by a factor of two and the fast variations of the
field in the lower medium are now included in the local impedance.

However, with our facilities (six 650 MHz PC in parallel),
computation times remain very long, typically from days at L band
up to weeks at Ku band to get statistically significant results for a
single frequency. This is why approximate methods for fast estimating
the bistatic cross-section from sea surface are still necessary. But
it is important to be able to estimate the accuracy of the various
approximate methods through comparisons with rigorous methods.

Our numerical experiments devoted to sea surface spectrum have
shown that the scattering patterns have similar shapes for both the
impedance approximation and the perfectly conducting model. As a
matter of fact, except at large scattering angles, the ratio between
the two bistatic cross-sections is close to Fresnel’s reflection coefficient.
Hence, even though sea water is far from being perfectly conducting,
we think this model is well suited for testing approximate methods.
Indeed, on one hand computation times with the integral method are
divided by a factor of 3 and methods like Kirchhoff approximation
are much easier to implement. On the other hand, since a perfectly
conducting metal is not dispersive, there is no need to redo the (long)
computations for each frequency band. In order to give a great
generality to this result, we have also fitted the sea surface spectrum by
a power law spectrum. No doubt that the most accurate approximation
for sea surface in the microwave range will remain the same than for
perfectly conducting surfaces.
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Most scattering approximations are basically of high frequency or
low frequency type. Since the ocean surface spectrum covers a very
wide range of scales, it seems difficult to find a single approximation
which applies to all scales. This is why approximate models for sea
surface scattering often combine both a high frequency and a low
frequency approximation, leading to so-called two-scale models [17, 18].
Consequently, a cut-off frequency separating the two domains has to be
chosen. This is a difficult task, since, except for low winds, the domains
of validity of the two approximations do not overlap. Therefore, the
best choice often results from an optimization based on comparison
with real data. To overcome this problem, several attempts have been
made to develop approximate methods with domain of validity covering
both high and low frequency ranges (the so-called Integral Equation
Method [19], the Small Slope Approximation SSA [20], the extended
Kirchhoff [21], the Operator Expansion Method [22, 23]). To roughly
sum up the great amount of work dedicated to these methods during
the last decade, it appears that they all consider the surface slope
as a pertinent parameter, and that second order terms in slope are
required to fit both small perturbation method for small scales and
Kirchhoff approximation for large scales [24]. However, computation
of second order terms is a hard task, since it generally involves multiple
integration of oscillating functions. This is why in our opinion, there is
still interest in studying two scale models combining two methods with
low complexity, as first order approximate methods. The aim consists
in making the two domains of validity overlap in order to choose the
optimal cut-off frequency in this common range.

The paper is organized as follows. In the first part, a rigorous
integral formalism leading to weakly singular integral equations is
presented, as well as the surface impedance approximation for low
penetrable media and the beam simulation method to synthesize
incident beams with arbitrary size. The second part of this paper
is devoted to testing first order approximations against the rigorous
integral method, and it is shown that the Small Slope Approximation
is very accurate in predicting the bistatic scattering cross-section from
the high spatial frequencies of the sea surface. This result has lead us
to suggest an improvement of a classical two-scale model, as described
in the last section.

2. RIGOROUS BISTATIC MODEL

Our formulation is based on a surface integral representation of the
scattering problem. The case of media with large conductivity such as
the ocean surface at microwave frequencies can be modelized by a single
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equation thanks to a curved-surface impedance boundary condition.
The method of moments (MoM) is then applied, and the resulting
linear system is solved by a Sparse Matrix Flat Surface Iterative
Approach [25]. The surface, supposed of infinite extent, is illuminated
by a Gaussian beam so that only a finite area of the surface has to
be considered. However, surfaces of arbitrary area can be handled
thanks to the beam decomposition. This technique has been applied
to a 410 m long surface with ocean spectrum.

2.1. Surface Integral Representation

We will follow quite closely the notations of Voronovich [20] for the
scattering amplitude and the different approximate methods. A rough
surface Σ separates the vacuum (upper medium) from an homogeneous
(lower) medium of complex relative permittivity ε. We choose the
right Cartesian coordinate (x̂, ŷ, ẑ) system with z-axis directed upward
and assume Σ is given by an Cartesian equation z = h(r) = h(x, y).
The electromagnetic field is time-harmonic, and an exp (−iωt) time
dependence is assumed. In vacuum, the field writes as the sum E0 +E
of the incident and scattered fields.

The surface Σ needs to be twice continuously differentiable. The
unit normal vector n̂ is directed toward vacuum. The tangential
components of the electric and magnetic fields on the surface{

m = n̂×
(
E0 + E

)
j = n̂×

(
H0 + H

) (1)

are continuous for a finite relative permittivity ε of the lower medium
and satisfy the Statton-Chu integral equations(

1
2

+ M (1)
)

m +
i

ωε0
P (1)j = n̂ ∧E0 (2a)(

1
2

+ M (1)
)

j− i

ωµ0
P (1)m = n̂ ∧H0 (2b)

and (
1
2
−M (2)

)
m− i

ωε0ε
P (2)j = 0 (3a)(

1
2
−M (2)

)
j +

i

ωµ0
P (2)m = 0 (3b)

Superscript (1) (resp. (2)) refers to the upper (resp. lower) medium
and M and P are the integral operators introduced by Martin and Ola
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in [26]. R = r+h (r) and R′= r′+h (r′) are two points on Σ, and c is
one of the surface densities m or j

M (1,2)cR = n̂R × curlR
∫
Σ
G

(1,2)
R,R′cR′dΣ′ (4)

P (1,2)cR = n̂R × curlRcurlR
∫
Σ
G

(1,2)
R,R′cR′dΣ′ (5)

The free space Green’s function G writes

G
(1,2)
R,R′ = − exp

(
iK(1,2)

∣∣R−R′
∣∣) /4π

∣∣R−R′
∣∣ (6)

with wave numbers K(1) = K = ω/c for vacuum and K(2) =
√
εω/c

for the lower medium.
The scattered field can be deduced from the surface densities m

and j, at any point R = r+z z of vacuum:

ER = −curlR
∫
Σ
G

(1)
R,R′mR′dΣ′ − i

ωε0
curlRcurlR

∫
Σ
G

(1)
R,R′jR′dΣ′ (7)

2.2. Curved Surface Impedance

The general dielectric problem has two unknown surface densities, but
for media with large conductivity, the Green’s function (6) of the lower
medium shows a fast decreasing behaviour due to exp

(
iK(2) |R−R′|

)
and associated operators M2 and P2 have thus short range action. This
range is characterized by the skin depth d = ic/ (ω

√
ε) of the lower

medium. An accurate numerical solution of the integral equations (3a)
or (3b) would require the currents to be sampled at the skin depth scale.
This can be avoided thanks to an impedance approximation: Marvin
and Celli in [14] have expanded relationship (3b) between the surface
densities as a series with respect to the skin depth d. They have shown
that this relationship is local up to the second order: m = Zj+ o

(
d2

)
.

So integral relationship (3a) or (3b) can be approximated by a local,
impedance-like relationship:

mR = ZjR = ηn̂R ×


1 + d


SR −

tr
(
SR

)
2





 jR (8)

η = −iωµ0d is the intrinsic impedance of the lower medium. Curved
surface impedance Z is only function of the skin depth d and of the
first and second derivatives of the surface profile at R, i.e., the local
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slope and curvature. SR denotes the extrinsic curvature tensor, and
its trace tr

(
SR

)
equals the sum of the surface main curvatures [27].

If the curvature is neglected, one finds back mR = ηn̂R × jR, a
commonly used first order impedance boundary condition [28, 15]. In
the limit case of a null skin depth, the impedance approximation gives
m = 0, which corresponds to the perfectly conducting surface.

2.3. Method of Moments

Even with an impedance approximation, the surface has to be sampled
at the scale of the wavelength in vacuum λ = 2π/K. Thus, the
linear system associated by the Method of Moments to a bidimensional
surface scattering problem is of large order, and its matrix is full (i.e.,
non-sparse). This is why:

• the lowest level basis and test functions have been chosen for fast
computation of the matrix elements,

• this system is solved in an iterative way, using the Sparse Matrix
Flat Surface Iterative Approach [25],

• A Multilevel Canonical Grid technique [11] is used.

2.3.1. Single Weakly Singular Integral Equation

The kernels of operators M (1,2) behave as the first derivative of the
Green’s functions (4), i.e., as 1/ |R−R′|2. Pulse functions for basis
functions and delta functions for test functions can thus be applied
to M (1,2), the singularity of which can be analytically integrated as
a Cauchy principal value. Since operators P (1,2) involve one more
differentiation (5), they are hypersingular operators, with kernels
behaving like 1/ |R−R′|3. However, this singularity is of electrostatic
nature: independent of the wavenumber, it is the same for P (1) and
P (2), and so disappears in

(
P (1) − P (2)

)
. Summing equations (2b) and

(3b) gives a weakly singular integral equation.

(
1 + M (1) −M (2)

)
j− i

ωµ0

(
P (1) − P (2)

)
m = n̂×H0 (9)

The curved surface impedance boundary condition is then applied to
get a single unknown integral equation[(

1 + M (1) −M (2)
)
− i

ωµ0

(
P (1) − P (2)

)
Z

]
j = n̂×H0 (10)
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exact distance

canonical grid distance

horizontal distance

Figure 1. The difference between the exact, the horizontal and the
multi-level canonical grid distances.

Therefore the ocean surface scattering problem can be solved using
only two unknown scalar functions, as it is the case for the perfectly
conducting surface.

The MoM can be applied to equation (10), on a regular 2D-
grinding of the (xOy) plane, following [25]. M (2) and P (2) have a
short range and Z is local, so they only concern the diagonal elements
of the MoM matrix. The equation (10) is more complex than the
Magnetic Field Integral Equation for the perfectly conducting surface,
so the non-diagonal elements of the MoM matrix are three times longer
to compute.

2.3.2. Two Nested Iterative Levels Solver

The MoM system AX = B is solved in an iterative way by the
Generalized Minimum Residual algorithm (GMRES). The convergence
of this method is greatly sped up by the use of the Sparse Matrix Flat
Surface Iterative Approach [25, 29], seen as an iterative preconditioner
of the GMRES [13].

The elements of the matrix A are formally distributed into two
matrices S and W, using a neighborhood distance rd. The elements
corresponding to an interaction at a horizontal distance |ri − rj | (see
Figure 1) smaller than this neighborhood distance rd constitute the
strong matrix S, the other elements belonging to the weak matrix W.

A = S +W :

{
|ri − rj | ≤ rd ⇒ Sij = Aij ,Wij = 0
|ri − rj | > rd ⇒ Sij = 0,Wij = Aij

The neighborhood distance rd is chosen from physical and numerical
criteria, so that the strong matrix S is a sparse matrix, of which non-
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zero elements can be loaded in central memory. Three wavelengths
(in vacuum) is a typical value for the neighborhood distance rd. The
product of the weak matrixW by a vector is handled by the Multilevel
Canonical technique, described in the next paragraph.

Due to the short-range coupling effect [30], the strong matrix
contains the most important interactions. We choose it as a first
approximation of the MoM matrix A, so its inverse can be used as
a preconditioning matrix for the GMRES: instead of solving AX = B,
we consider the (right preconditioned) system AS−1Y = B, which is
solved with fewer iterations. When Y has been found, X is obtained
by solving Y = SX.

To solve the system AS−1Y = B, GMRES only requires the
computation of the product of the matrix AS−1 by any vector U.
This product is performed in two steps. First, the intermediate system
SV = U is solved. Secondly, the product AV is computed. Since
the matrix S is sparse and loaded in central memory, the intermediate
system SV = U can be quickly solved in an iterative way, with the
help of the BiConjugate Gradient Stabilized algorithm.

When the neighborhood distance rd is large, the flat-surface
matrix can be added to the strong matrix S in the preconditioning
process, see [25].

2.3.3. Multi-Level Canonical Grid Technique

The exact computation of the elements of the weak matrix W is a
very time-consuming operation. To overcome this problem, we have
implemented the multilevel expansion [11] of the canonical grid method
[8]. Let us consider the action of the weak part of an operator M on
the surface density j at Ri = ri + h (ri) ẑ, Ri corresponding to the
node point ri of the regular 2D-grinding of the (xOy) plane. It can be
expressed as

(WM j)i = n̂i ∧

Ri ∧


∑

j

Γijjj


−∑

j

Γij (Rj ∧ jj)


 (11)

Its evaluation requires the computation of pi =
∑
j Γijvj . Γij is related

to the kernel of operator M , and only depends on the exact distance
|Ri −Rj | when |ri − rj | > rd.

Γij = Γ (|Ri −Rj |) = δxδy
iK |Ri −Rj | − 1
|Ri −Rj |2

GRi,Rj (12)

As only weak interactions are considered here, Γij is null when
|ri − rj | ≤ rd.
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The [minh; maxh] interval of the z-axis is regularly sampled. nz
denotes the number of samples and δz is the sampling step. Γij , as
a function of h (ri), can be approximated by a Lagrange interpolation
Γij =

∑
m LimΓ (|ri + zmẑ−Rj |) with coefficients Lim = Lm(h(ri))

[31]. The coefficients of the Lagrange table L are computed once for
ever. As Γij is also a function of h (rj), it can be interpolated on this
variable, with the same Lagrange table L. Denoting by Rim = ri+zmẑ,
Rjn = rj + znẑ and Γimjn = Γ (|Rim −Rjn|),

Γij =
∑
m,n

LimLjnΓimjn (13)

|Rim −Rjn| is called the multi-level canonical grid distance (see Figure
1). Product pi writes in three steps

vjn = Ljnvj (14a)

pim =
∑
j,n

Γimjnvjn (14b)

pi =
∑
m

Limpim (14c)

Since Rim and Rjn are nodes of a regular 3D-grid, the matrix
Γimjn can be reindexed in order to become a 3D-Toeplitz matrix. If
nxny is the number of points on the 2D-grid, this 3D-Toeplitz matrix
is of order nxnynz and has (2nx − 1)(2ny − 1)(2nz − 1) independent
elements. From this matrix, one can build a 3D-circulant matrix of
order 2nx2ny2nz, so that one of the submatrices of this 3D-circulant
matrix is the original 3D-Toeplitz matrix. A circulant matrix has
the property to be diagonal in the Fourier space. The 2nx2ny2nz
diagonal elements of the Fourier transform of the 3D-circulant matrix
are computed thanks to a 3D-Fast Fourier Transform and stored in
central memory.

The weak part of the operator
(
P (1) − P (2)

)
can be handled in

the same way. An expression similar to (11), but more complex, can
be given, and the same Lagrange table is used for interpolations.

Each one of the three components of v (14b) is a nxnynz vector.
Let us consider one of these components. From this vector, a
2nx2ny2nz vector is build by zero-padding. The 3D-Fast Fourier
Transform of this 2nx2ny2nz vector is computed, the elements of this
transform are multiplied by the diagonal elements associated with
the matrix Γimjn, and then an inverse 3D-Fast Fourier Transform is
performed. From the resulting 2nx2ny2nz vector can be extracted
the nxnynz elements of the corresponding component of p (14b).
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Therefore, the complete matrix-vector product (14b) can be achieved
at the cost of six 3D-Fast Fourier Transforms of order 2nx2ny2nz [32].

A precise computation requires a z-axis sampling at the scale of
the wavelength in vacuum. The result of the method can be validated
by a convergence test, as δz tends toward zero. The convergence speed
is driven by the interpolation order �. The multi-level canonical grid
technique is particularly time-efficient for mildly rough surfaces, where
the required number of sampling points on the z-axis is small, typically
8, 16 or 32.

2.4. Scattering Amplitude

In remote sensing, one is concerned by the far field, so formula (7)
is not of direct applicability. We recall in this section the scattering
amplitude formulation and how it can be extended to incident gaussian
beams.

2.4.1. Incident Plane Wave

The scattering amplitude describes the response of the surface in a
given direction of space and polarization. Precisely, for an α-polarized
incident plane wave of wavevector K0 = k0 − q0ẑ and electric field

E0
α = q

−1/2
0 exp (ik0 · r− iq0z) p̂α (15)

the β-polarized component of the scattered field writes:

Eβ =
∫

Sβα(k,k0) q−1/2 exp(ik · r + iqz)p̂β dk (16)

Horizontal and vertical components of the wavevectors satisfy k2
0+q2

0 =
K2, q0 > 0 and k2 + q2 = K2, e (q)+�m (q) ≥ 0. The factor q

−1/2
0 is

chosen so as to obtain a k0-independent Poynting vector flow through
an horizontal unit surface (2ωε0)

−1.
The two-two matrix S(k,k0) = (Sβα(k,k0)) is called the

scattering matrix. It is in general expressed in the classical remote
sensing VH polarization basis composed of the vertical and horizontal
polarizations. Note that the integral of (16) runs over R

2. The
components with k ≤ K correspond to propagating waves while
k > K correspond to evanescent waves. The evanescent waves can
be neglected in the far field zone.
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2.4.2. Incident Finite Beam

Rather than to describe the incident field by a plane wave, it is more
realistic to consider a beam that illuminates only a finite part of the
surface. Also, from a numerical point of view, this modelization of
the incident field is well suited for the Method of Moments, and it
permits one to deal with arbitrarily large surface thanks to the beam
superposition method [33]. We will thus assume that the α-polarized
electric field is of the form:

E0
α =

∫
k0≤K

g̃(k0 − k0) q
−1/2
0 exp (ik0 · r− iq0z) p̂α dk0 (17)

A common choice for the spectral amplitude function g̃ is a Gaussian
beam with widths 1/�x, 1/�y:

g̃ (k) =

√
�x�y
π

exp

(
−
�2xk

2
x + �2yk

2
y

2

)
(18)

The characteristic sizes of the beam footprint on the surface are then
�x, �y. k0 denotes the mean incident direction of the beam. The
scattered field writes

Eβ =
∫

S̄βα(k,k0) q−1/2 exp(ik · r + iqz)p̂β dk (19)

S̄βα(k,k0) =
∫

k0≤K

g̃(k0 − k0)Sβα(k,k0) dk0 (20)

Applying Weyl’s transformation to (7) and identifying with (19), we
obtain

S̄βα(k,k0) = −Kq−1/2

8π2

∫
Σ

[(
p̂β×K̂

)
·mα

R +
√

µ0

ε0
p̂β · jαR

]
exp(−ik · r− iqz)dΣ (21)

with scattered wavevector K = k+ qẑ and unit vector K̂ = K/K. mα

and jα are the solutions of integral equations for the incident field (17).
The incident and scattered energy can be defined as the flux of the

Poynting vector through a horizontal plane z = zm above the surface
(i.e., zm > maxh). Using Parseval’s formula, this leads to integrals in
the spectral domain for the incident and scattered energies

Φ0
α =

1
2ωε0

∫
k0≤ω/c

∣∣∣g̃(k0 − k0)
∣∣∣2 dk0 =

1
2ωε0

= Φ0 (22)
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Φβα = Φ0
∫

k≤ω/c

∣∣S̄βα(k,k0)
∣∣2 dk (23)

The normalized scattered intensity is thus defined as

Iβα =
dΦβα

Φ0dΩ
= Kq

∣∣S̄βα∣∣2 (24)

In the vicinity of normal incidence, we use a specific polarization
basis rather than the VH:{

p̂E = k× y/ ‖k× y‖
p̂H = K̂× p̂E

(25)

Note that (p̂E , p̂H) coincides with
(
v̂, ĥ

)
in the mean incidence plane.

2.5. Beam Decomposition and Parallel Computations

2.5.1. The Beam Decomposition Method

At this stage, the scattered field can be computed numerically, but for
small beam footprints only. As a matter of fact, the random access
memory required by the MoM grows linearly with the illuminated area
and the computing time increases even faster, so that the footprint
that can be handled with common numerical facilities is of some
wavelengths radius. This footprint is several orders smaller than a
real remote sensing measurement footprint.

Beam decomposition is an elegant way to reconcile real
experiments and MoM. It has originally been developed for one-
dimensional random rough surfaces [33], but adaptation to two-
dimensional surfaces is straightforward [13]. Beam decomposition is
based on the representation of a large beam by a weighted sum of
shifted narrow beams. Each narrow beam is handled as a particular
scattering problem. Summing the scattering amplitudes from all the
narrow beams provides the scattering amplitude from the large one.

Following paragraph 2.4.2, the incident large beam is characterized
by dimensions �x and �y. In a similar way, the incident narrow beams
have dimensions nx < �x and ny < �y. The scattering amplitude S̄αβ
of the large beam is expressed from the scattering amplitudes S̄nmαβ of
the narrow beams:

S̄αβ
(
k,k0

)
=

Nn∑
n=−Nn

Nm∑
m=−Nm

unm
(
k− k0

)
S̄nmαβ

(
k,k0

)
(26)
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where rnm = (n∆X,m∆Y ) and

unm (k) =
∆X∆Y

2π
exp (−ik · rnm)√
�2x−n2

x

√
�2y−n2

y

exp

[
−1

2

(
(n∆X)2

�2x − n2
x

+
(m∆Y )2

�2y − n2
y

)]

(27)
Numerical experimentation has shown that a good representation of
the large beam is achieved with an overlapping ∆X � 2nx and
∆Y � 2ny.

In order to modelize a real measurement, the computed scattered
intensity (24) might have to be averaged over the angular aperture of
the receive antenna. Otherwise, the scattering pattern is oscillating
with a characteristic period equal to the angular width of the incident
beam.

The beam decomposition is naturally well fitted for parallel
computation. As a matter of fact, after the rough surface is divided
and weights for the decomposition are evaluated, the following tasks
(computation of the incident field on the surface, building the matrices,
solving the system and computing the scattering amplitude) can be
performed independently for each narrow beam. Then, scattering
amplitudes need only be summed. This scheme is particularly adapted
to distributed memory parallel environment.

The overlapping between narrow beams ensures that interactions
between adjacent beams are taken into account. Further interactions
are neglected. Another limitation of the beam decomposition is that
the maximum incident angle is given by the size of the narrow beam.
Grazing angles are still a tricky problem.

2.5.2. Application to a 410m Long Perfectly Conducting Surface with
Ocean Spectrum

We consider the unified ocean spectrum proposed in [34]. Figure 2
shows the omnidirectional spectrum S(κ) and the spreading delta ratio
∆(κ) of the directional spectrum

Ψ (κx, κy) = Ψ (κ, φ) =
S(κ)
κ

1 + ∆(κ) cos (2φ)
2π

(28)

for a wind speed of 10 m/s at a height of 10 m. This spectrum
includes spatial wavelengths as low as 1.5 10−2 rad/m, whereas the
lowest electromagnetic wavenumber used in ocean remote sensing is
30 rad/m (L band, λ = 0.2 m). In these conditions, the minimum
beam footprint size to cover the whole spectrum is two thousand
wavelengths. Therefore, we have considered a 2048λ long, that is 410 m
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Figure 2. Omnidirectional spectrum S and spreading delta ratio
∆ of the Unified ocean spectrum against spatial wavenumber κ
for a wind speed of 10 m/s at a height of 10 m. The horizontal
arrow represents a spatial wavelength domain around the L band
electromagnetic wavenumber where the power-law spectrum fits the
the ocean spectrum.

long surface, sampled at δx = δy = 2.5 cm. The beam decomposition
technique is applied to narrow beams illuminating square surfaces of
16λ = 3.2 m side and centered on the x-axis. With an overlapping of
∆X = 12λ = 2.4 m, 509 narrow beams have to be lined up in order
to synthesize a 410 m-long large beam. Since this beam is only 3.2 m-
large, the anisotropy of the ocean spectrum cannot be correctly taken
into account, and the delta ratio has been set to zero. Incidence is
normal and the electric field is parallel to the length of the surface.

Figure 3 shows the fast-oscillating scattering pattern given by the
beam decomposition for a perfectly conducting surface. The smooth
curves have been obtained by averaging the scattered intensity (24)
over a 10◦ aperture.

3. TESTING APPROXIMATE METHODS

3.1. Description of the Surface

In this section, our goal is to test the most common first order
approximate methods on the ocean surface. However, the ocean surface
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Figure 3. Non-normalized scattered intensity against scattering angle
for a 410 m long perfectly conducting surface with ocean spectrum at
L band and normal incidence. The smooth curves have been obtained
by averaging over a 10◦ aperture.

spectrum and permittivity depend on many parameters, among which
the wind speed and direction, the electromagnetic wavelength, the
salinity and the temperature. As the MoM computations are very
time-consuming, we feel the need to give the most universal value to
each computation.

For a given electromagnetic wavenumber K, the ocean spectrum
decays fast enough in order to ensure that high-wavenumbers κ >
κu � K do not contribute to the scattering process. We have set
κu/K = 4, which has been shown numerically in the 1D case to be
the electromagnetic cut-off. We also choose a low-wavenumber cutoff
κl � K and consider the band-limited power-law spectrum:

Ψr (κ) =

{
ακ−4 κ ∈ [κl;κu]

0 κ /∈ [κl;κu]
(29)

This spectrum has two remarkable features.
• First, for given values of κu/K and κl/K, neither Kσ nor s, the

zeroth and second moments of the spectrum, depend on K:
 Kσ =

√
α/2

√
(κl/K)−2 − (κu/K)−2

s =
√

α ln (κu/κl)
(30)
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Figure 4. Omnidirectional spectrum S and spreading delta ratio
∆ of the Unified ocean spectrum against spatial wavenumber κ
for a wind speed of 7 m/s at a height of 10 m. The horizontal
arrow represents a spatial wavelength domain around the Ku band
electromagnetic wavenumber where the power-law spectrum fits the
the ocean spectrum.

• Secondly, with a multiplicative factor set to α = 5.25 10−3 and
for a low-wavenumber cutoff κl/K as low as 1/30, this spectrum
correctly fits the ocean omnidirectional spectrum on [κl;κu] for
various values of the electromagnetic wavenumber and wind speed.
Consider for example the L band for a 10 m/s wind speed (Figure
2) and the Ku band for a 7 m/s wind speed (Figure 4). Moreover,
as the delta ratio is generally small on κ ∈ [K/30; 4K], the
truncated power-law spectrum is representative of the ocean
directional spectrum on this domain of κ.

Hence, considering this spectrum and assuming there is no dependency
of ε on K, the scattered field for various electromagnetic wavenumbers
and winds can be obtained through one computation. In a first step,
the surface is thus assumed to be perfectly conducting. This is justified
by the high value of the conductivity of the ocean surface, and this will
enable us to discriminate the different approximate methods.
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3.2. Perfectly Conducting Ocean Surface

One of the most popular approximation in scattering from rough
surfaces is the Kirchhoff Approximation (KA), also known as the
Tangent Plane or Physical Optics approximation. It is known to
be valid when the incident wavelength is small compared to the
correlation length of the surface. The Small Slope Approximation
(SSA), first introduced in [20], starts from an ansatz based on the
invariance properties of the scattering amplitude for an incident plane
wave. Performing a horizontal or vertical translation d on the
surface only affects the latter by a phase shift exp (−i (k− k0) · d)
or exp (−i (q + q0) ẑ · d), respectively, so that a solution is sought in
the form:

S(k,k0) =
1

(2π)2

∫
dr exp (−i (k−k0)·d−i (q+q0)h (r)) Ξ [k,k0, r, h] ,

where Ξ is some functional that contains the explicit dependence on
the surface (Ξ = 1 for the plane). The unknown Ξ is obtained
by performing a functional Taylor expansion with respect to the
Fourier transform h̃ and imposing the coefficients to be consistent with
the Small Perturbation Method (SPM) as h → 0. The first order
approximation for KA and SSA can be summarized in the following
formula [20, pp. 123 and 154]

S(k,k0)=B(k,k0)
2
√
qq0

q+q0

1
(2π)2

∫
dr exp (−i (k−k0)·r−i (q+q0)h (r))

(31)
where the matrix B(k,k0) is given by

BKA(k,k0) =
1

2qq0


 (

K2+qq0
)
k̂ · k̂0−kk0 K (q + q0) ẑ ·

(
k̂× k̂0

)
K (q+q0) ẑ ·

(
k̂× k̂0

)
−

(
K2+qq0

)
k̂ · k̂0+kk0




(32)
for the KA and

BSPM (k,k0) =
1
qq0


 K2k̂ · k̂0 − kk0 Kq0 ẑ ·

(
k̂× k̂0

)
Kq ẑ ·

(
k̂× k̂0

)
−qq0k̂ · k̂0


 (33)

for the SSA. Note that the KA and SSA at first order differ only by the
geometrical factor B(k,k0), that does not depend on the roughness.
The off-diagonal terms of the scattering matrix vanish when k̂ = k̂0,
meaning that no depolarization occurs in the incidence plane. In the
specular direction (k = k0), the upper and lower diagonal elements for
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both approximations reduce to +1 and −1, respectively. In the limit
h → 0, the complex exponential in the integrand can be linearized,
yielding to:

S(k,k0) = BSPM (k,k0)

(
δ (k− k0)− 2i

√
qq0

h̃ (k− k0)
(2π)2

)
(34)

which is the classical formula of SPM when B(k,k0) is given by (33).
The computation of the scattering amplitude for a finite beam S̄βα

in the KA or SSA after (20) and (31) involves a double summation over
the space and frequency variable r and k0, respectively, which becomes
computationally demanding in the 3D case. However, the computation
can be greatly simplified by assuming that the finite beam is sufficiently
narrow (spectrally), so that we may approximate B(k,k0) � B(k,k0)
and q0 � q0 within the beam and extend the k0 domain of integration
to infinity. In that case, the integral over k0 is a mere inverse Fourier
transform of the beam envelope g̃, which leads to:

S̄(k,k0) = B(k,k0)
2
√
qq0

q + q0

∫
drg (r) exp (−i (k−k0) · r−i (q+q0)h (r))

(35)
This expression becomes accurate as the wavelength becomes small
compared to the beam size, λ � �x, �y, or equivalently as the
wavenumber becomes much larger than the spectral width, K �
1/�x, 1/�y. The scattering amplitude for a finite beam S̄βα in the SPM
is directly obtained applying (20) on (34).

Figure 5 show Monte-Carlo simulations of the scattering intensity
for the KA, the SSA, the SPM and the MoM. The ensemble average
has been performed over 1000 sample surfaces for the approximate
methods and 100 sample surfaces (due to the large computation time)
for the MoM.

Both KA and SSA turn out to be extremely accurate (less than
.5 dB error) in both polarizations for small angles (−30◦ ≤ θ ≤ +50◦),
but only SSA remains reliable over the whole range of scattering angles
(less than 1 dB error in VV and for −65◦ ≤ θ ≤ +75◦ in HH). SPM
surestimates by far the scattering coefficient in the specular region
but becomes reliable at larger angles as it meets the SSA. The only
reproach we can make on SSA is that it doesn’t vanish with q for the
V polarisation.

Hence, the SSA appears to be the only first order approximate
method to give an accurate estimation of the whole scattering pattern
of the ocean spectrum with a low-wavenumber cutoff κl as low as K/30.
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Figure 5. Normalized scattered intensity against scattering angle for
a perfectly conducting surface with band-limited power-law spectrum
at 20◦ incidence.

3.3. SSA for the Dielectric Ocean Surface

As applied to perfectly conducting or dielectric surfaces, SSA only
differ by the geometrical factor B(k,k0). For a relative permittivity ε,
the SPM gives

Bε
SPM (k,k0) = (ε− 1)




q(2)q
(2)
0 k̂·k̂0−εkk0

(εq+q(2))
(
εq0+q

(2)
0

) Kq
(2)
0 ẑ·(k̂×k̂0)

(q+q(2))
(
εq0+q

(2)
0

)
Kq(2) ẑ·(k̂×k̂0)

(εq+q(2))
(
q0+q

(2)
0

) K2k̂·k̂0

(q+q(2))
(
q0+q

(2)
0

)



(36)

with q
(2)
0 =

√
εK2 − k2

0 and q(2) =
√
εK2 − k2.

In Figure 6 we have plotted the Monte-Carlo simulations of the
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Figure 6. Normalized scattered intensity against scattering angle
for a dielectric surface with band-limited power-law spectrum and
permittivity ε = 73.5039 + i60.9670 at 20◦ incidence.

scattering intensity for the SSA and the MoM. Relative permittivity
has been set to ε = 73.5039+i60.9670, which is the value at L band for
a sea surface temperature of 15◦C and a salinity of 35 psu, following
[35]. Figure 6 shows that the SSA is perfectly reliable. It appears that
SSA is even better for a finite permittivity: the scattered intensity is
of remarkable agreement with MoM, even for low grazing angles in V
polarization.

4. AN IMPROVED BISTATIC TWO-SCALE MODEL

Let us consider again the application of the beam decomposition
technique on a 410 m long ocean surface (Section 2.5.2). The scattering
amplitudes of the 509 narrow beams have been summed following
(27), the scattering intensity has been computed and averaged over
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Figure 7. Non-normalized scattered intensity against scattering angle
for 509 narrow beams illuminating a 410 m long perfectly conducting
ocean surface at L band and normal incidence. Comparison between
the coherent (beam decomposition) and the incoherent sum.

a 10◦ aperture. The 509 scattering computations could be combined
in another way. Instead of summing the scattering amplitudes,
one first computes the 509 scattering intensities from the weighted
scattering amplitudes, and then sums all the contributions. This
incoherent pattern, which has the 10◦ angular aperture of the narrow
beams, coincide (Figure 7) with the angular averaged coherent pattern
(beam decomposition). Roughly speaking, this numerical example
shows that, illuminating an ocean surface of very large extent or
scanning this surface with a small beam leads to the same scattering
intensity pattern. Since the small beams cannot capture the low
frequency behaviour of the surface power spectrum, this numerical
experiment makes us think that the influence of the large scales on
the scattering pattern may be accurately taken into account through
simple geometrical considerations. This idea has been developed for a
long time [17, 36] and has given birth to a class of models referred to
as two-scale models. By two-scale model, we mean an electromagnetic
model dealing separately with the high and low spatial frequencies.
This requires the power spectrum of the surface to be divided into
these two kind of scales, including the choice of a cut-off frequency.

The simplest two-scale model, from a conceptual point of view,
combines the small perturbation theory with geometrical Optics [17].
Basically, the scattering problem is replaced by that of a small
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scale roughness illuminated under some local incidence angle and
polarization state related to the local slope. Averaging over the density
of probability of slopes, derived from the low frequency part of the
surface spectrum, provides the scattering cross-section from the sea
surface. The use of the small perturbation theory for predicting the
small scales contribution drastically limits the choice of the cut-off
spatial frequency. Indeed, if one admits that the upper bound of the
domain of validity of perturbation theory in terms of root mean square
height is roughly given by Kσ = 0.3, the lowest cut-off frequency is
κc = K/6 with the surface spectrum considered in the previous section.
As a consequence, geometrical Optics approximation is applied as soon
as κ < K/6, which in our opinion is quite a high spatial frequency.
Nevertheless, this model has been widely implemented and tested over
the past decades, and it seems that the optimal cut-off lies between K/2
and K/3 for estimation of the backscattering cross-section [37, 38].

The numerical results from the previous section have naturally
lead us to suggest a new two-scale model for fast computation of
the bistatic cross-section from sea surface. It simply consists in
replacing the small perturbation theory by the first-order small slope
approximation to describe the contributions from the high spatial
frequencies in the two-scale model described above. The previous
section clearly shows that the cut-off between the high and low
frequency approximations can be moved very far towards the low
spatial frequency range, down to K/30 at least. Not only thinking
in terms of rays in the range κ < K/30 (instead of K/3) is much
more reasonable, but first order small slope approximation in the range
κ > K/30 is also more accurate than first order small perturbation
method in the range κ > K/3, especially around the specular reflection
direction.

Our computations have been restricted to isotropic surfaces,
though obviously sea surface is not isotropic. However, as noticed in
Section 3.1, the delta ratio, which is a measure of surface anisotropy at
each scale, remains rather low in the high frequency range. Therefore,
as a first approximation, we suggest to neglect the surface anisotropy
above the low frequency cut-off. Moreover, from the theoretical point
of view, this approximation can be removed and anisotropy could be
taken into account in a more complete model. Of course, the cut-
off suggested in this paper remains arbitrary. It results from the
restriction of our rigorous computations to surface samples which could
not include larger scales. May be first order mall-slope approximation
remains accurate over a wider spatial frequency range, but one has to
take care of surface anisotropy in this case.

More sophisticated, but more difficult to implement, two-scale
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models have been proposed. For instance, Bass and Fuks [36] suggest
to apply the small perturbation method to a smooth underlying
surface described by the low spatial frequencies. This method requires
the computation of Green’s dyadics for a half-space bounded by
such a smooth surface. This can be achieved thanks to Kirchhoff
approximation. However, a similar combination involving Kirchhoff
approximation for large scales and small slope approximation for small
scales is not straightforward, since the derivation of the scattering
amplitudes with small slope approximation does not result from the
convolution product of some Green’s function with some surface
density. As an improvement of this model, we could suggest to
perform a rigorous computation of the perturbation induced by the
small scale roughness when superimposed to large scales. This would
also permit one to move down the cut-off frequency but would require
huge computation times.

It must be noticed that all the models discussed in this section
assume long range interactions to be negligible. In other words,
multiple reflections induced by large scales are neglected. Indeed,
the rigorous model is limited by the size of the elementary beams,
while geometrical Optics and first order Kirchhoff approximation do
not include multiple scattering. The accuracy of this assumption is
not estimated here.

5. CONCLUSION

In this paper, two models for the solution of the electromagnetic
scattering from sea surface are suggested. One is based on a rigorous
integral formalism, combined with an impedance approximation and
the beam simulation technique. It is aimed at providing an accurate
simulation of a real remote sensing experiment from sea surface. Since
computation times are by far much too long for practical applications
with such a model, fast approximate models are required. Therefore,
the rigorous model has been used to estimate the accuracy of various
approximations. This study led us to suggest an improvement of the
classical two-scale model, consisting in replacing the small perturbation
theory by the small slope approximation. This suggestion is supported
by rigorous computations showing a perfect agreement between the
numerical simulations and the small slope approximation for surface
samples with root mean square height far beyond the domain of validity
of the small perturbation method. This change allows the cut-off
spatial frequency to be divided by a factor close to ten, which restricts
the use of geometrical optics to large scales (κ < K/30).
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