Vol. 106
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2021-12-28
A Compact Dual Notch-Band Frequency Reconfigurable UWB Monopole Antenna
By
Progress In Electromagnetics Research M, Vol. 106, 215-226, 2021
Abstract
To meet the requirements of miniaturization, multi-functions, and anti-interference of the antenna, this paper proposes a compact dual notch band frequency reconfigurable ultra-wideband (UWB) antenna. The antenna consists of an angle-cut rectangular radiation patch, a coplanar waveguide (CPW) structure, and a defective ground structure (DGS). A C-slot and an inverted U-slot are introduced to eliminate the interference of the Indian National Satellite band (INSAT), 5G band, and X satellite communication band. By controlling the PIN diodes across the two slots, the antenna can work in four states: UWB, two single notch bands, and one dual notch band. The impedance bandwidth in UWB mode is 2.9-12 GHz, with a relative bandwidth of 122%. The notch frequencies are 4.2-5.2 GHz and 6.2-8.1 GHz, respectively. In the passband of the antenna, the maximum gain is 7.17 dBi, and the group delay is less than 1 ns. The antenna size is 18 × 17 × 1.6 mm3, which is easy to integrate with the communication systems. The antenna can be freely switched between the UWB mode and each notch band mode, which can be applied to the UWB wireless communication systems.
Citation
Jingchang Nan, Jiu-Yang Zhao, and Yuan Wang, "A Compact Dual Notch-Band Frequency Reconfigurable UWB Monopole Antenna," Progress In Electromagnetics Research M, Vol. 106, 215-226, 2021.
doi:10.2528/PIERM21090805
References

1. The Federal Communications Commission "Revision of Part 15 of the Commission's rules regarding ultra-wideband transmission systems from 3.1 to 10.6 GHz,", 98-153, Federal Communications Commission, Washington, DC, 2002.
doi:10.3390/s17020349

2. Dong, J. and Q. Li, "Compact planar ultrawideband antennas with 3.5/5.2/5.8 GHz triple band-notched characteristics for internet of things applications," Sensors, Vol. 17, No. 2, 1-17, 2017.
doi:10.1155/2016/3560938

3. Syed, A. and R. W. Aldhaheri, "A very compact and low profile UWB planar antenna with WLAN band rejection," Scientific World Journal, Vol. 2016, 1-7, 2016.
doi:10.1155/2017/5375036

4. Jang, E. S., C. Y. Kim, D. G. Yang, and S. S. Hong, "Suppressed band characteristics of an UWB conical monopole antenna with split loops based on the equivalent circuit," International Journal of Antennas and Propagation, Vol. 2017, 1-8, 2017.
doi:10.1017/S1759078717000034

5. Borhani Kakhki, M. and P. Rezaei, "Reconfigurable microstrip slot antenna with DGS for UWB applications," International Journal of Microwave and Wireless Technologies, 1517-1522, 2017.
doi:10.1002/mop.31092

6. Rajkumar, S. and K. T. Selvan, "Compact 4 element Sierpinski Knopp fractal UWB MIMO antenna with dual band notch," Microwave and Optical Technology Letters, Vol. 60, 1023-1030, 2018.
doi:10.2528/PIERC20012101

7. Dalal, P. and S. K. Dhull, "Upper WLAN band notched UWB monopole antenna using compact two via slot electromagnetic band gap structure," Progress In Electromagnetics Research C, Vol. 100, 161-171, 2020.
doi:10.2528/PIERL19122703

8. Zhang, J., L. Wang, and W. Zhang, "A novel dual band-notched CPW-fed UWB MIMO antenna with mutual coupling reduction characteristics," Progress In Electromagnetics Research Letters, Vol. 90, 21-28, 2020.
doi:10.3390/s18030911

9. Rahman, M. U. and J. D. Park, "The smallest form factor UWB antenna with quintuple rejection bands for IoT applications utilizing RSRR and RCSRR," Sensors, Vol. 18, No. 3, 1-16, 2018.
doi:10.1049/iet-map.2016.0009

10. Oraizi, H. and N. V. Shahmirzadi, "Frequency- and time-domain analysis of a novel UWB reconfigurable microstrip slot antenna with switchable notched bands," IET Microwaves, Antennas Propag., Vol. 11, No. 8, 1127-1132, 2017.
doi:10.1016/j.aeue.2019.07.004

11. Kumar, G. and R. Kumar, "A survey on planar ultra-wideband antennas with band notch characteristics: Principle, design, and applications," AEU - International Journal of Electronics and Communications, Vol. 109, 76-98, 2019.
doi:10.3390/s19061411

12. Iqbal, A., A. Smida, N. K. Mallat, M. T. Islam, and S. Kim, "A compact UWB antenna with independently controllable notch bands," Sensors, Vol. 19, No. 6, 1-12, 2019.
doi:10.1007/s11277-017-4077-7

13. Hayouni, M., F. Choubani, et al. "Main effects ensured by symmetric circular slots etched on the radiating patch of a compact monopole antenna on the impedance bandwidth and radiation patterns," Wireless Personal Communications, Vol. 95, No. 4, 4243-4256, 2017.
doi:10.2528/PIERL20122502

14. Zhang, X.-Y., H. Xu, Y. Xie, and Q. Wu, "A dual band-notched antenna for UWB applications," Progress In Electromagnetics Research Letters, Vol. 96, 105-111, 2021.
doi:10.1109/JSEN.2018.2815438

15. Islam, M. T., F. Bin Ashraf, T. Alam, et al. "A compact ultrawideband antenna based on hexagonal split-ring resonator for pH sensor application," Sensors, Vol. 18, No. 9, 1-16, 2018.
doi:10.2528/PIERC20122401

16. Kaur, K., A. Kumar, and N. Sharma, "Split ring slot loaded compact CPW-fed printed monopole antennas for ultra-wideband applications with band notch characteristics," Progress In Electromagnetics Research C, Vol. 110, 39-54, 2021.
doi:10.2528/PIERC21050202

17. Dalal, P. and S. K. Dhull, "Design of triple band-notched UWB MIMO/diversity antenna using triple bandgap EBG structure," Progress In Electromagnetics Research C, Vol. 113, 197-209, 2021.
doi:10.1016/j.aeue.2017.12.020

18. Yadav, D., M. P. Abegaonkar, S. K. Koul, V. Tiwari, and D. Bhatnagar, "A compact dual band-notched UWB circular monopole antenna with parasitic resonators," AEU - International Journal of Electronics and Communications, Vol. 84, 313-320, 2018.
doi:10.1016/j.aeue.2014.07.023

19. Bakariya, P. S. and S. Dwari, "Triple band notch UWB printed monopole antenna with enhanced bandwidth," AEU - International Journal of Electronics and Communications, Vol. 69, 26-30, 2015.
doi:10.1016/j.aeue.2015.12.014

20. Yadav, A. and D. Sethi, "Slot loaded UWB antenna: Dual band notched characteristics," AEU - International Journal of Electronics and Communications, Vol. 70, No. 3, 1-2, 2016.
doi:10.1109/LAWP.2012.2193551

21. Aboufoul, T., A. Alomainy, and C. Parini, "Reconfiguring UWB monopole antenna for cognitive radio applications using GaAs FET switches," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 392-394, 2012.
doi:10.1109/TAP.2020.2988941

22. Quddious, A., M. A. B. Abbasi, M. A. Antoniades, P. Vryonides, V. Fusco, and S. Nikolaou, "Dynamically reconfigurable UWB antenna using an FET Switch powered by wireless RF harvested energy," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 8, 5872-5881, 2020.

23. Ibrahim, A. A., A. Batmanov, and E. P. Burte, "Design of reconfigurable antenna using RF MEMS switch for cognitive radio applications," 2017 Progress In Electromagnetics Research Symposium - Spring (PIERS), 369-376, St Petersburg, Russia, May 22-25, 2017.

24. Sharma, K., et al. "Reconfigurable dual notch band antenna on Si-substrate integrated with RF MEMS SP4T switch for GPS, 3G, 4G, bluetooth, UWB and close range radar applications," AEU - International Journal of Electronics and Communications, Vol. 110, 1-9, 2019.
doi:10.2528/PIERC18010818

25. Nejatijahromi, M., M. Naghshvarianjahromi, and M. Rahman, "Compact CPW fed switchable UWB antenna as an antenna filter at narrow-frequency bands," Progress In Electromagnetics Research C, Vol. 81, 199-209, 2018.
doi:10.2528/PIERL18010819

26. Nejatijahromi, M., M. Rahman, and M. Naghshvarianjahromi, "Continuously tunable WiMAX band-notched UWB antenna with fixed WLAN notched band," Progress In Electromagnetics Research Letters, Vol. 75, 97-103, 2018.
doi:10.1016/j.aeue.2019.04.001

27. Lakrit, S., S. Das, A. El Alami, D. Barad, and S. Mohapatra, "A compact UWB monopole patch antenna with reconfigurable Band-notched characteristics for Wi-MAX and WLAN applications," AEU - International Journal of Electronics and Communications, Vol. 105, 106-115, 2019.
doi:10.1017/S175907871800096X

28. Yang, H., X. Xi, H. Hou, Y. Zhao, and Y. Yuan, "Design of reconfigurable monopole antenna with switchable dual band-notches for UWB applications," International Journal of Microwave and Wireless Technologies, Vol. 10, No. 9, 1065-1071, 2018.

29. Wu, W., Y. B. Li, R. Y. Wu, et al. "Band-notched UWB antenna with switchable and tunable performance," International Journal of Antennas and Propagation, Vol. 2016, 1-6, 2016.
doi:10.1002/mop.29424

30. Srivastava, G., S. Dwari, and B. K. Kanaujia, "A compact UWB antenna with reconfigurable dual notch bands," Microwave and Optical Technology Letters, Vol. 57, No. 12, 2737-2742, 2015.
doi:10.1002/mop.29609

31. Tripathi, S., A. Mohan, and S. Yadav, "A compact fractal UWB antenna with reconfigurable band notch functions," Microwave and Optical Technology Letters, Vol. 58, No. 3, 509-514, 2016.

32. M/A-COM Data Sheet for MA4AGBLP912 beam lead PIN diode.