Vol. 104
Latest Volume
All Volumes
PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2021-08-26
A Multi-Band Cylindrical Conformal Antenna with Low Specific Absorption Rate for Wireless Medical Capsule Endoscopy
By
Progress In Electromagnetics Research M, Vol. 104, 123-132, 2021
Abstract
A multi-band cylindrical conformal endoscopy antenna with low specific absorption rate (SAR) is designed for endoscope applications, which covers the Industrial, Scientific and Medical bands (ISM 902-928 MHz, 2.4-2.4835 GHz), Medical Device Radio Communications Service band (MedRadio 401-406 MHz) and Wireless Medical Telemetry Service (WMTS 608-614 MHz). The proposed antenna radiates as a symmetrical meanderline structure with a center loaded parasitic opened-loop element, which is bent into the cylindrical conformal shape and wrapped onto the inner wall of the capsule shell. The parasitic opened-loop element excites low frequency resonance at 403 MHz and reduces the SAR values of the antenna. The measured relative bandwidth (|S11| < -10 dB) of the antenna implements 133% ultra-wideband, ranging from 0.35 GHz to 1.76 GHz, and 39% wideband, ranging from 2.01 GHz to 3 GHz. The peak gains and the peak 1 g SAR values at 403 MHz, 611 MHz, 915 MHz, 2.4 GHz are -26.6 dBi, -18.9 dBi, -11.8 dBi, -11.3 dBi, and 83, 82, 94, 153 W/kg, respectively. The results indicate that the proposed antenna complies well with the human safety standards.
Citation
Zhong Yu, Bingwen He, Xinguo Wu, and Xudong An, "A Multi-Band Cylindrical Conformal Antenna with Low Specific Absorption Rate for Wireless Medical Capsule Endoscopy," Progress In Electromagnetics Research M, Vol. 104, 123-132, 2021.
doi:10.2528/PIERM21072601
References

1. Kissi, C., M. Särestöniemi, T. Kumpuniemi, S. Myllymäki, M. Sonkki, J.-P. Mäkelä, M. N. Srifi, H. Jantunen, and C. Pomalaza-Raez, "Receiving UWB antenna for wireless capsule endoscopy communications," Progress In Electromagnetics Research C, Vol. 101, 53-69, 2020.
doi:10.2528/PIERC19122204

2. Xing, B., Y. Zhang, H. Zou, and Z. Liu, "A conformal quasi-isotropic dielectric resonator antenna for wireless capsule endoscope application," Progress In Electromagnetics Research M, Vol. 99, 211-221, 2021.
doi:10.2528/PIERM20091901

3. Patil, K. S. and E. Rufus, "A review on antennas for biomedical implants used for IoT based health care," Sensor Review, Vol. 40, 273-280, 2019.
doi:10.1108/SR-01-2019-0020

4. Peng, Y., K. Saito, and K. Ito, "Antenna design for impulse-radio-based wireless capsule endoscope communication systems," IEEE Transactions on Antennas and Propagation, Vol. 66, 5031-5042, 2018.
doi:10.1109/TAP.2018.2854360

5. Duan, Z., L.-J. Xu, S. Gao, and G. Wen, "Integrated design of wideband omnidirectional antenna and electronic components for wireless capsule endoscopy systems," IEEE Access, Vol. 6, 29626-29636, 2018.
doi:10.1109/ACCESS.2018.2840689

6. Fiedler, T. M., M. E. Ladd, and A. K. Bitz, "SAR simulations & safety," Neuroimage, Vol. 168, 33-58, 2018.
doi:10.1016/j.neuroimage.2017.03.035

7. Bao, Z., Y. Guo, and R. Mittra, "Single-layer dual-/tri-band inverted-F antennas for conformal capsule type of applications," IEEE Transactions on Antennas and Propagation, Vol. 65, 7257-7265, 2017.
doi:10.1109/TAP.2017.2758161

8. Das, R. and H. Yoo, "A multiband antenna associating wireless monitoring and nonleaky wireless power transfer system for biomedical implants," IEEE Transactions on Microwave Theory and Techniques, Vol. 65, 2485-2495, 2017.
doi:10.1109/TMTT.2017.2647945

9. Yousaf, M., I. B. Mabrouk, F. Faisal, M. Zada, Z. Bashir, A. Akram, and H. Yoo, "Compacted conformal implantable antenna with multitasking capabilities for ingestible capsule endoscope," IEEE Access, Vol. 8, 157617-157627, 2020.
doi:10.1109/ACCESS.2020.3019663

10. Shang, J. and Y. Yu, "An ultrawideband and conformal antenna for wireless capsule endoscopy," Microwave and Optical Technology Letters, Vol. 62, 860-865, 2020.
doi:10.1002/mop.32087

11. Wang, J., M. Leach, E. G. Lim, Z. Wang, R. Pei, and Y. Huang, "An implantable and conformal antenna for wireless capsule endoscopy," IEEE Antennas and Wireless Propagation Letters, Vol. 17, 1153-1157, 2018.
doi:10.1109/LAWP.2018.2836392

12. Shang, J. and Y. Yu, "An ultrawideband capsule antenna for biomedical applications," IEEE Antennas and Wireless Propagation Letters, Vol. 18, 2548-2551, 2019.
doi:10.1109/LAWP.2019.2942842

13. Basir, A., M. Zada, Y. Cho, and H. Yoo, "A dual-circular-polarized endoscopic antenna with wideband characteristics and wireless biotelemetric link characterization," IEEE Transactions on Antennas and Propagation, Vol. 68, 6953-6963, 2020.
doi:10.1109/TAP.2020.2998874

14. Gabriel, S., R. W. Lau, and C. Gabriel, "The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues," Physics in Medicine and Biology, Vol. 41, 2271-2293, 1996.
doi:10.1088/0031-9155/41/11/003

15. Gabriel, S., R. W. Lau, and C. Gabriel, "The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz," Physics in Medicine and Biology, Vol. 41, 2251-2269, 1996.
doi:10.1088/0031-9155/41/11/002

16. Ga Briel, C. and A. Peyman, "Dielectric properties of biological tissues; Variation with age - Science direct," Conn's Handbook of Models for Human Aging (Second Edition), 939-952, 2018.