Vol. 104
Latest Volume
All Volumes
PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2021-09-03
Characteristic Research on Double Rotor Permanent Magnet Motor with Irregular Halbach Array
By
Progress In Electromagnetics Research M, Vol. 104, 133-144, 2021
Abstract
Dual-rotor permanent magnet motor has the characteristics of high torque density and high efficiency and has a wide range of application prospects in many fields. However, the double air-gap structure also makes the internal magnetic field distribution more complicated and torque fluctuation more serious. To improve the double-layer air-gap magnetic field distribution and reduced torque pulsation, based on the Halbach array magnetization, the inner and outer irregular Halbach array dual-rotor permanent magnet motor model was established to obtain the ideal one-sided magnetic field. By comparing the magnetic field distribution of the inner and outer layers, the no-load back-EMF, and the cogging torque, it is proved that the motor with the proposed structure can optimize the air-gap magnetic density and no-load back-EMF and reduce the cogging torque; at the same time, the torque ripple is also significantly reduced to ensure the stability of the motor operation.
Citation
Yonglin Pan, and Libing Jing, "Characteristic Research on Double Rotor Permanent Magnet Motor with Irregular Halbach Array," Progress In Electromagnetics Research M, Vol. 104, 133-144, 2021.
doi:10.2528/PIERM21071903
References

1. Chen, Y. Y., L. Quan, X. Y. Zhu, H. Wei, and W. Zheng, "Electromagnetic performance analysis of double-rotor stator permanent magnet motor for hybrid electric vehicle," IEEE Transactions on Magnetics, Vol. 48, No. 11, 4204-4207, 2012.
doi:10.1109/TMAG.2012.2206374

2. Gao, Q. X., "Optimal design and electromagnetic analysis of double rotor permanent magnet machine," China Three Gorges University, 2018.

3. Zhao, W. L., T. A. Lipo, and B. I. Kwon, "Comparative study on novel dual stator radial flux and axial flux permanent magnet motors with ferrite magnets for traction application," IEEE Transactions on Magnetics, Vol. 50, No. 11, 1-4, 2014.

4. Sun, Y. P., B. K. Su, and X. D. Sun, "Optimal design and performance analysis for interior composite-rotor bearingless permanent magnet synchronous motors," IEEE Access, Vol. 7, 7456-7465, 2019.
doi:10.1109/ACCESS.2018.2890020

5. Zhang, W. J., S. D. Huang, J. Gao, R. Li, and L. T. Dai, "Electromagnetic torque analysis for all-harmonic-torque permanent magnet synchronous motor," IEEE Transactions on Magnetics, Vol. 54, No. 11, 1-5, 2018.

6. Bao, X. P. and Z. Ji, "Structure study and optimization design on Halbach PMSM," Small & Special Electrical Machines, Vol. 42, No. 5, 20-25, 2014.

7. Gao, Q. X., C. Wang, L. B. Jing, and Z. H. Luo, "Magnetic field analysis and torque calculation of double-rotor permanent magnet motor with Halbach array," Small & Special Electrical Machines, Vol. 46, No. 11, 51-54, 2018.

8. Yang, S. and Z. Q. Zhu, "Investigation of permanent magnet brushless machines having unequal-magnet height pole," IEEE Transactions on Magnetics, Vol. 48, No. 12, 4815-4830, 2012.
doi:10.1109/TMAG.2012.2202398

9. Zhang, J., X. M. Liu, and Z. C. Shi, "Design and analysis of alinear generator with improved Halbach PM arrays," Small & Special Electrical Machines, Vol. 46, No. 2, 23-26, 2018.

10. Kou, B. Q., H. C. Cao, W. L. Li, and X. C. Zhang, "Analytical analysis of anovel double layer Halbach permanent magnet array," Transactions of China Electrotechnical Society, Vol. 30, No. 10, 68-76, 2015.

11. Zhao, C. H., H. F. Cai, and J. Guo, "Comparative research of T raditional Halbacharray and double Halbacharray," Journal of Shanghai Dianji University, Vol. 18, No. 3, 158-162, 2015.

12. Praveen, R. P., M. H. Ravichandran, V. T. Sadasivan Achari, V. P. Jagathy Raj, G. Madhu, and G. R. Bindu, "A novel slotless Halbach-array permanent-magnet brushless DC motor for spacecraft applications," IEEE Transactions on Industrial Electronics, Vol. 59, No. 9, 3553-3560, 2012.
doi:10.1109/TIE.2011.2161058

13. Xu, H., "Reserach on dual-rotor permanent magnet motor," Changchun University of Science and Technology, 2014.

14. Huang, Y. K., T. Zhou, J. N. Dong, B. C. Guo, and L. Zhang, "An overview on developments and researches of axial flux permanent magnet machines," Proceedings of the CSEE, Vol. 35, No. 1, 192205, 2015.

15. Som, D., K. Li, J. Kadel, J. Wright, S. Modaresahmadi, J. Z. Bird, and W. William, "Analysis and testing of acoaxial magnetic gearbox with flux concentration Halbach rotors," IEEE Transactions on Magnetics, Vol. 53, No. 11, 1-6, 2017.
doi:10.1109/TMAG.2017.2715799

16. Zhang, T., X. T. Ye, L. H. Mo, and Q. Lu, "Electromagnetic performance analysis on the bearingless permanent magnet synchronous motor with Halbach magnetized rotor," IEEE Access, Vol. 7, 121265-121274, 2019.
doi:10.1109/ACCESS.2019.2937897

17. Guo, F., Y. J. Tang, L. Ren, and J. Li, "Structural parameter optimization design for Halbach permanent maglev rail," Physica C: Superconductivity, Vol. 470, No. 20, 1787-1790, 2010.
doi:10.1016/j.physc.2010.05.207

18. Liu, L. and L. B. Jing, "Analysis and calculation of the cogging torque of Halbach array permanent magnet machine," Journal of Magnetic Materials and Devices, Vol. 47, No. 2, 48-52, 2016.

19. Ni, Y. Y., X. Jiang, B. X. Xiao, and Q. J. Wang, "Analytical modeling and optimization of dual-layer segmented Halbach permanent-magnet machines," IEEE Transactions on Magnetics, Vol. 56, No. 5, 1-11, 2020.
doi:10.1109/TMAG.2020.2980222

20. Choi, J. Y., S. H. Lee, K. J. Ko, and S. M. Jang, "Improved analytical model for electromagnetic analysis of axial flux machines with double-sided permanent magnet rotor and coreless stator windings," IEEE Transactions on Magnetics, Vol. 47, No. 10, 2760-2763, 2011.
doi:10.1109/TMAG.2011.2151840