Vol. 101

Latest Volume
All Volumes
All Issues
2021-02-18

Broadband and High-Aperture Efficiency Fabry-Perot Antenna with Low RCS Based on Nonuniform Metamaterial Superstrate

By Hui-Fen Huang and Qi-Sheng Fan
Progress In Electromagnetics Research M, Vol. 101, 59-68, 2021
doi:10.2528/PIERM20120903

Abstract

Due to the nonuniform Electromagnetic (EM) field distribution over the superstrate, a Fabry-Perot Resonant Antenna is normally with high directivity but relatively low aperture efficiency when its aperture size is electrically large. In this paper, a Fabry-Perot resonator cavity antenna (FPCA) with a nonuniform metamaterial superstrate is proposed. The nonuniform metamaterial superstrate is a nonuniform double-sided printed dielectric, in which the upper surface is used for wideband RCS reduction, and the bottom surface is the nonuniform partially reflective surface (PRS) of FPRA for wideband and high aperture efficiency performances. Wideband RCS reduction is realized by designing the phase differences 90˚ in turn among three adjacent frequency-selective surfaces. The wideband 3 dB gain bandwidth and high aperture efficiency performances are obtained by designing the PRS with a positive reflection phase gradient vs frequency and a negative transverse-reflection magnitude gradient, respectively. The measured results show that the gain of the proposed antenna is 11.5 dBi greater than that of the primary source antenna with a peak value 15.5 dBi at 9.2 GHz. The aperture efficiency is 73.3%. The 3-dB gain bandwidth is from 8.75 to 11.47 GHz (26.9%), and the RCS reduction can be obtained effectively from 8.2 to 20 GHz (83.7%).

Citation


Hui-Fen Huang and Qi-Sheng Fan, "Broadband and High-Aperture Efficiency Fabry-Perot Antenna with Low RCS Based on Nonuniform Metamaterial Superstrate," Progress In Electromagnetics Research M, Vol. 101, 59-68, 2021.
doi:10.2528/PIERM20120903
http://jpier.org/PIERM/pier.php?paper=20120903

References