Vol. 99
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-12-04
Multiband Below-Cutoff Propagation in Rectangular Waveguides Filled with Multilayer Left-/Right-Handed Metamaterials
By
Progress In Electromagnetics Research M, Vol. 99, 115-127, 2021
Abstract
An accurate rigorous modal theory has been applied to investigate the propagation characteristics in a rectangular waveguide filled with multilayer left-handed and right-handed metamaterials. It is shown that such a waveguide supports different passbands below the waveguide's cutoff frequency, and the number of passbands is related to the corresponding layers of different left-handed metamaterials (LHMs) filled in the waveguide. The rigorous modal analysis of this structure reveals in detail how the waveguide geometry and left-handed metamaterial parameters may be selected to design rectangular waveguides supporting double or triple below-cutoff passbands. The efficient power transmissions in these below-cutoff passbands are validated by using the full-wave simulation software HFSS. These structures supporting multiple below-cutoff passbands could find applications in waveguide components requiring miniaturization and multiband properties, such as miniaturized multifunctional antennas and filters.
Citation
Qianru Weng, Qian Lin, and Hai-Feng Wu, "Multiband Below-Cutoff Propagation in Rectangular Waveguides Filled with Multilayer Left-/Right-Handed Metamaterials," Progress In Electromagnetics Research M, Vol. 99, 115-127, 2021.
doi:10.2528/PIERM20110303
References

1. Wikström, G., et al. "Challenges and technologies for 6G," 2020 2nd 6G Wireless Summit (6G SUMMIT), 1-5, Levi, Finland, 2020.

2. Kehn, M. N. M. and P. S. Kildal, "Miniaturized rectangular hard waveguides for use in multifrequency phased arrays," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 1, 100-109, 2005.
doi:10.1109/TAP.2004.840519

3. Bozzi, M., A. Georgiadis, and K. Wu, "Review of substrate-integrated waveguide circuits and antennas," IET Microwaves, Antennas & Propagation, Vol. 5, No. 8, 909-920, 2011.
doi:10.1049/iet-map.2010.0463

4. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Sov. Phys. Usp., Vol. 10, 509-514, 1968.
doi:10.1070/PU1968v010n04ABEH003699

5. Hrabar, S., J. Bartolic, and Z. Sipus, "Waveguide miniaturization using uniaxial negative permeability metamaterial," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 1, 110-119, 2005.
doi:10.1109/TAP.2004.840503

6. Siakavara, K., "Modal analysis of the microwave frequency response and composite right-/left-handed operation of a rectangular waveguide loaded with double positive and double negative materials," Int. J. RF Microwave Comput. Aided Eng., Vol. 1, 435-445, 2010.

7. Raveu, N., B. Byrne, L. Claudepierre, and N. Capet, "Modal theory for waveguides with anisotropic surface impedance boundaries," IEEE Trans. Microw. Theory Techn., Vol. 64, 1153-62, 2016.
doi:10.1109/TMTT.2016.2533387

8. Kuhler, L., G. Le Fur, L. Duchesne, and N. Raveu, "The propagation characteristics of 2-D metamaterial waveguides using the modal expansion theory," IEEE Trans. Microw. Theory Techn., Vol. 66, 4319-26, 2018.
doi:10.1109/TMTT.2018.2859944

9. Kim, D. J. and J. H. Lee, "Beam scanning leaky-wave slot antenna using balanced CRLH waveguide operating above the cutoff frequency," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 5, 2432-2440, 2013.
doi:10.1109/TAP.2013.2237740

10. Jin, J. Y., X. Q. Lin, and Q. Xue, "A miniaturized evanescent mode waveguide filter using RRRs," IEEE Transactions on Microwave Theory and Techniques, Vol. 64, No. 7, 1989-1996, 2016.
doi:10.1109/TMTT.2016.2574988

11. Kehn, M. N. M., M. Nannetti, A. Cucini, et al. "Analysis of dispersion in dipole-FSS loaded hard rectangular waveguide," IEEE Transactions on Antennas and Propagation, Vol. 54, No. 8, 2275-2282, 2006.
doi:10.1109/TAP.2006.879198

12. Rajo-Iglesias, E., Ó. Quevedo-Teruel, and M. N. M. Kehn, "Multiband SRR loaded rectangular waveguide," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 5, 1571-1575, 2009.
doi:10.1109/TAP.2009.2016799

13. Ibili, H., S. Keleş, Ö. Eriş, and Ö. Ergül, "Realization of multiband microwave metamaterials fabricated via low-cost inkjet printing," 2019 European Microwave Conference in Central Europe (EuMCE), 35-38, Prague, Czech Republic, 2019.

14. Justin, G. P., "Analysis and design of a new class of miniaturized circular waveguides containing anisotropic metamaterial liners,", The Degree of Doctor of Philosophy's Thesis, Dept. Elect. Comput. Eng., University of Alberta, 2016.

15. Ravelo, B. and B. Mazari, "Characterization of the regular polygonal waveguide for the RF EM shielding application," Progress In Electromagnetics Research M, Vol. 12, 95-105, 2010.
doi:10.2528/PIERM10030306

16. Collin, R. E., Field Theory of Guided Waves, 2nd Ed., IEEE Press, New York, 1991.

17. Ravelo, B., A. Thakur, A. Saini, and P. Thakur, "Microstrip dielectric substrate material characterization with temperature effect," ACES Journal, Vol. 30, No. 12, 1322-1328, 2015.

18. Lewi, T., "Thermally reconfigurable meta-optics," IEEE Photonics Journal, Vol. 11, No. 2, 1-16, 2019.
doi:10.1109/JPHOT.2019.2916161

19. Silveirinha, M. and N. Engheta, "Tunneling of electromagnetic energy through subwavelength channels and bends using ε-near-zero materials," Physical Review Letters, Vol. 97, No. 15, 157403.1-157403.4, 2006.
doi:10.1103/PhysRevLett.97.157403

20. Engheta, N. and R. Ziolkowski, Metamaterials: Physics and Engineering Explorations, Wiley, 2006.

21. Alu, A., M. G. Silveirinha, A. Salandrino, et al. "Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern," Physical Review B, Condensed Matter and Materials Physics, Vol. 75, No. 15, 155410.13-155410.1, 2007.
doi:10.1103/PhysRevB.75.155410