Vol. 99
Latest Volume
All Volumes
PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-12-02
Model Based-Testing of Spatial and Time Domain Artificial Intelligence Smart Antenna for Ultra-High Frequency Electric Discharge Detection in Digital Power Substations
By
Progress In Electromagnetics Research M, Vol. 99, 91-101, 2021
Abstract
This paper presents a fifth-generation (5G) wireless smart antenna for performing both power substation communication (in space domain beam-steering) and electrostatic discharge (in time domain Ultra-high Frequency ``UHF'' impulse) detection. The same smart antenna used to communicate with other wireless antennas in the switchyard, as well as with the control room is utilized to cyclically gather data from power apparatus, busbars and switches where electrostatic discharge (ESD) may occur. The ESD poses a major threat to electrical safety and lifetime of the apparatus as well as the stability of the power system. The same smart antenna on which beam rotation in space-domain is designed by implementing an artificial neural network (ANN) is also trained in time-domain to identify any of the received signals matching the ultra-high frequency band electrostatic discharge pulses that may be superimposed on the power frequency electric current. The proposed system of electrostatic discharge detection is tested for electrostatic pulses empirically simulated and represented in a trigonometric form for the training of the Perceptron Neural model. The working of the system is demonstrated for electrostatic discharge pulses with rising times of the order of one nanosecond. The artificial intelligence system driving the 5G smart antenna performs the dual role of beam steering for 5G wireless communication (operating in the space domain) and for picking up any ESD generated UHF pulses from any one of the apparatus or nearby lightning leaders (operating in the time domain).
Citation
Lorothy Morrison Singkang, Kismet Anak Hong Ping, Herman Kunsei, Kumarasamy Senthilkumar, Kandasamy Pirapaharan, Ahmed M. A. Haidar, and Paul Ratnamahilan Polycarp Hoole, "Model Based-Testing of Spatial and Time Domain Artificial Intelligence Smart Antenna for Ultra-High Frequency Electric Discharge Detection in Digital Power Substations," Progress In Electromagnetics Research M, Vol. 99, 91-101, 2021.
doi:10.2528/PIERM20090301
References

1. Buhagiar, T., J.-P. Cayuela, A. Procopiou, and S. Richards, "Poste intelligent-the next generation smart substation for the french power grid,", 1-4, 2016.

2. Osseiran, A., J. F. Monserrat, and P. Marsch, 5G Mobile and Wireless Communications Technology Wireless Communications, Cambridge University Press, 2016.
doi:10.1166/jctn.2020.8759

3. Singkang, L. M. B., K. A. H. Ping, and P. R. P. Hoole, "Electric discharges localization for substation fault monitoring using two elements sensor," J. Comput. Theor. Nanosci., Vol. 17, No. 2, 1009-1013, Feb. 2020.

4. Singkang, L., H. P. Kismet, and P. R. P. Hoole, "Detection and localization of electric discharges in indoor substation for fault monitoring," Sci. Proceeding Ser., Vol. 1, No. 2, 94-96, 2019.

5. Senthilkumar, K. S., K. Pirapaharan, and R. R. Hoole, "Single perceptron model for smart beam forming in array antennas," Int. J. Electr. Comput. Eng., Vol. 6, No. 5, 2300-2309, Oct. 2016.

6. Gohil, N. J., P. Kundu, and A. Chowdhury, "Partial discharge source localization using UHF sensors," 2017 3rd International Conference on Condition Assessment Techniques in Electrical Systems, CATCON 2017 - Proceedings, Vol. 2018, 208-211, Janua, 2018.

7. Yaacob, M. M., M. A. Alsaedi, A. Al Gizi, and N. Zareen, "Partial discharge signal detection using ultra high frequency method in high voltage power equipments: A review," Int. J. Sci. Eng. Res., Vol. 4, No. 1, 2013.
doi:10.1109/MEI.2015.7303259

8. Wu, M., H. Cao, J. Cao, H. L. Nguyen, J. B. Gomes, and S. P. Krishnaswamy, "An overview of state-of-the-art partial discharge analysis techniques for condition monitoring," IEEE Electr. Insul. Mag., Vol. 31, No. 6, 22-35, Nov. 2015.

9. Alkadi, R., et al. "Smart antenna-based partial discharge detection and classification system," Mediterr. Microw. Symp., 1-4, Jul. 2016.
doi:10.2528/PIER13102103

10. Cai, Z. L., R. H. Wilkinson, and A. Bojovschi, "Partial discharge detection approach for a medium voltage switchgear system," Progress In Electromagnetics Research, Vol. 144, 221-228, 2014.

11. Robles, G., R. Albarracín, and J. L. Vázquez, "Antennas in partial discharge sensing system," Handbook of Antenna Technologies, Vol. 3, 2419-2474, Springer, Singapore, 2016.

12. Dewi, P., A. Aziz, M. Izhar, A. Bakar, N. H. Jabarullah, and Y. Z. Arief, "Partial discharge detection method and pattern recognition using fast fourier transform and wavelet analysis," Sci. Int., Vol. 29, No. 5, 1099-1104, Lahore, 2017.
doi:10.1109/ICLP.2014.6973170

13. Hoole, P. R., K. Pirapaharan, M. Kavi, J. Fisher, N. F. Aziz, and S. R. H. Hoole, "Intelligent localisation of signals using the signal wavefronts: A review," 2014 International Conference on Lightning Protection, ICLP 2014, 474-479, 2014.

14. Dubrov, G. K., V. I. Oganyan, R. G. Narakidze, and N. D. Aleksanyan, "On the mathematical simulation of digital substation technological processes," J. Eng. Appl. Sci., Vol. 2, No. 12, 276-282, 2017.

15. Hinkley, K. and C. Mistry, "First digital substation in TransGrid-Australia: a journey, business case, lessons," IET, Vol. 2018, No. 15, 1135-1139, Oct. 2018.
doi:10.4028/www.scientific.net/MSF.721.331

16. Hoole, P. R. P., N. F. Aziz, V. Ganapathy, J. Ganeshan, H. Ramiah, and S. R. H. Hoole, "Aircraft mounted neural network electrostatic discharge (ESD) location," Materials Science Forum, Vol. 721, 331-336, 2012.

17. Hoole, P. R. P., Smart Antennas and Signal Processing for Communications, Biomedical, and Radar Systems, 38-83, WIT Press, 2001.

18. Pirapaharan, S. R. H., K. Kunsei, H. Senthilkumar, K. Hoole, and P. R. P. Hoole, "A single beam smart antenna for wireless communication in a highly re°ective and narrow environment," Int. Symp. Fundam. Electr. Eng., 1-5, 2016.

19. Pirapaharan, K. H. K., "A single beam smart antenna for wireless communication in a highly reflective and narrow environment," Int. Symp. Fundam. Electr. Eng., IEEE, 1-5, 2016.
doi:10.1016/j.jclepro.2020.122777

20. Ullah, T. A. S., A. M. Haidar, P. Hoole, and H. Zen, "The current state of distributed renewable generation, challenges of interconnection and opportunities for energy conversion based DC microgrids," J. Clean. Prod., 122777, 2020.