Vol. 97
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-10-08
Robust Adaptive Beamforming Based on Interference-Plus-Noise Covariance Matrix Reconstruction Method
By
Progress In Electromagnetics Research M, Vol. 97, 87-96, 2020
Abstract
Aiming at the problem of look direction error in the desired signal, a novel robust adaptive beamforming method based on covariance matrix reconstruction is proposed. Firstly, the Sparse Bayesian Learning (SBL) is performed to acquire the true signal direction and the spatial spectrum simultaneously. Secondly, the SBL spatial spectrum is used to reconstruct the interference-plus-noise covariance matrix. Compared with other reconstruction algorithms, this approach can realize the position estimation without any optimization procedures. Theoretical analysis, simulation results and water pool experiments demonstrate the effectiveness and robustness of the propose algorithm.
Citation
Yang Bi, Xi'an Feng, and Tuo Guo, "Robust Adaptive Beamforming Based on Interference-Plus-Noise Covariance Matrix Reconstruction Method," Progress In Electromagnetics Research M, Vol. 97, 87-96, 2020.
doi:10.2528/PIERM20082003
References

1. Gu, Y. and A. Leshem, "Robust adaptive beamforming based on interference covariance matrix reconstruction and steering vector estimation," IEEE Trans. Signal Process., Vol. 60, No. 7, 3881-3885, 2012.
doi:10.1109/TSP.2012.2194289

2. Huang, L., J. Zhang, X. Xu, and Z. Ye, "Robust adaptive beamforming with a novel interference-plus-noise covariance matrix reconstruction method," IEEE Trans. Signal Process., Vol. 63, No. 7, 1643-1650, 2015.
doi:10.1109/TSP.2015.2396002

3. Gu, Y., N. A. Goodman, S. Hong, and Y. Li, "Robust adaptive beamforming based on interference covariance matrix sparse reconstruction," Signal Processing, Vol. 96, Part B, 375-381, 2014.
doi:10.1016/j.sigpro.2013.10.009

4. Zhang, Z., W. Liu, W. Leng, A. Wang, and H. Shi, "Interference-plus-noise covariance natrix reconstruction via spatial power spectrum sampling for robust adaptive beamforming," IEEE Signal Process. Lett., Vol. 23, No. 1, 121-125, 2015.
doi:10.1109/LSP.2015.2504954

5. Zheng, Z., Y. Zheng, W. Wang, and H. Zhang, "Covariance matrix reconstruction with interference steering vector and power estimation for robust adaptive beamforming," IEEE Transactions on Vehicular Technology, Vol. 67, No. 9, 8495-8503, 2018.
doi:10.1109/TVT.2018.2849646

6. Zhu, X., X. Xu, and Z. Ye, "Robust adaptive beamforming via subspace for interference covariance matrix reconstruction," Signal Processing, Vol. 167, 107289.1-107289.10, 2020.

7. Huang, J., H. Su, and Y. Yang, "Robust adaptive beamforming method based on desired signal steering vector estimation and interference-plus-noise covariance matrix reconstruction," The Journal of Engineering, Vol. 2019, No. 21, 7683-7686, 2019.
doi:10.1049/joe.2019.0739

8. Trees, H. L., Detection, Estimation, and Modulation Theory, Optimum Array Processing, Wiley-Interscience, New York, 2002.

9. Gerstoft, P., C. F. Mecklenbrauker, A. Xenaki, et al. "Multisnapshot sparse bayesian learning for DOA," IEEE Signal Process. Lett., Vol. 23, No. 10, 1469-1473, 2016.
doi:10.1109/LSP.2016.2598550

10. Mecklenbrauker, C. F., P. Gerstoft, A. Panahi, et al. "Sequential Bayesian sparse signal reconstruction using array data," IEEE Trans. Signal Process., Vol. 61, No. 24, 6344-6354, 2013.
doi:10.1109/TSP.2013.2282919

11. Giri, R. and B. Rao, "Type I and type II Bayesian methods for sparse signal recovery using scale mixtures," IEEE Trans. Signal Process., Vol. 64, No. 13, 3418-3428, 2016.
doi:10.1109/TSP.2016.2546231

12. Raj, A. G. and J. H. McClellan, "Single snapshot super-resolution DOA estimation for arbitrary array geometries," IEEE Signal Process. Lett., Vol. 26, No. 1, 119-123, 2019.
doi:10.1109/LSP.2018.2881927

13. Zhang, Z. and B. D. Rao, "Sparse signal recovery with temporally correlated source vectors using sparse Bayesian learning," IEEE J. Sel. Topics Signal Process., Vol. 5, No. 5, 912-926, 2011.
doi:10.1109/JSTSP.2011.2159773

14. Liu, Z.-M., Z.-T. Huang, and Y.-Y. Zhou, "An efficient maximum likelihood method for direction-of-arrival estimation via sparse Bayesian learning," IEEE Trans. Wireless Commun., Vol. 11, No. 10, 1-11, 2012.
doi:10.1109/TWC.2012.090312.111912

15. Zhang, J. A., Z. Chen, P. Cheng, and X. Huang, "Multiple-measurement vector based implementation for single-measurement vector sparse Bayesian learning with reduced complexity," Signal Processing, Vol. 118, 153-158, 2016.
doi:10.1016/j.sigpro.2015.06.020

16. Zhang, Z., T.-P. Jung, S. Makeig, et al. "Spatiotemporal sparse Bayesian learning with applications to compressed sensing of multichannel physiological signals," IEEE Trans. Neural Syst. Rehabil. Eng., Vol. 22, No. 6, 1186-1197, 2014.
doi:10.1109/TNSRE.2014.2319334

17. Jaffer, A. G., "Maximum likelihood direction finding of stochastic sources: A separable solution," Proc. IEEE Int. Conf. Acoust., Speech, Signal Process., 2893-2896, 2002.

18. Stoica, P. and R. Moses, Introduction to Spectral Analysis, Prentice Hall, New Jersey, 1997.