Vol. 97
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-10-21
A Study on Electromagnetic Field and Force for Magnetic Micro-Robots Applications
By
Progress In Electromagnetics Research M, Vol. 97, 201-213, 2020
Abstract
Magnetic micro-robots are used widely in a narrow space, such as internal inspections and desilting of slender pipelines, minimal- or non-invasive diagnoses and treatments of various human diseases in blood vessels, and micro-manipulations, micro-sensing fields. Magnetic micro-robots are usually driven by several electromagnetic coils. It is essential to understand the magnetic field and magnetic forces acting on micro-robots to drive the magnetic micro-robots more effectively. In this paper, the finite element method is applied to simulate the magnetic field generated by a coil assembly. Moreover, a three-dimensional magnetic force simulation is also performed to reveal the magnetic forces acting on a cylindrical magnetic micro-robot. Experimental measurements validate the simulated results. A Hall sensor is used to measure the magnetic field along the coil assembly's axial and radial direction. The micro-robot is glued to a connecting rod, fixing a force sensor to measure the magnetic forces acting on it. The measured results are in good accordance with the simulated ones, which prove the validity of the simulation. The results from this study show potential to provide a reference to magnetic micro-robot applications.
Citation
Chuan Qu, Yong-Chen Pei, Long Xu, Zheng-Rong Xia, and Qing-Yuan Xin, "A Study on Electromagnetic Field and Force for Magnetic Micro-Robots Applications," Progress In Electromagnetics Research M, Vol. 97, 201-213, 2020.
doi:10.2528/PIERM20073005
References

1. Kim, K., J. Guo, X. Xu, and D. L. Fan, "Recent progress on man-made inorganic nanomachines," Small, Vol. 11, No. 33, 4037-4057, 2015.
doi:10.1002/smll.201500407

2. Wang, W., W. Duan, Z. Zhang, M. Sun, A. Sen, and T. E. Mallouk, "A tale of two forces: Simultaneous chemical and acoustic propulsion of bimetallic micromotors," Chemical Communications, Vol. 51, No. 6, 1020-1023, 2015.
doi:10.1039/C4CC09149C

3. Xu, T., W. Gao, L. P. Xu, X. Zhang, and S. Wang, "Fuel-free synthetic micro-/nanomachines," Advanced Materials, Vol. 29, No. 9, 1603250, 2017.
doi:10.1002/adma.201603250

4. Pak, O. S., W. Gao, J. Wang, and E. Lauga, "High-speed propulsion of flexible nanowire motors: Theory and experiments," Soft Matter, Vol. 7, No. 18, 8169-8181, 2011.
doi:10.1039/c1sm05503h

5. Pawashe, C., S. Floyd, E. Diller, and M. Sitti, "Two-dimensional autonomous microparticle manipulation strategies for magnetic microrobots in fluidic environments," IEEE Transactions on Robotics, Vol. 28, No. 2, 467-477, 2012.
doi:10.1109/TRO.2011.2173835

6. Fusco, S., M. S. Sakar, S. Kennedy, C. Peters, R. Bottani, F. Starsich, A. Mao, G. A. Sotiriou, S. Pane, S. E. Pratsinis, D. Mooney, and B. J., "An integrated microrobotic platform for on-demand, targeted therapeutic interventions," Advanced Materials, Vol. 26, No. 6, 952-957, 2014.
doi:10.1002/adma.201304098

7. Nelson, B. J., I. K. Kaliakatsos, and J. J. Abbott, "Microrobots for minimally invasive medicine," Annual Review of Biomedical Engineering, Vol. 12, No. 1, 55-85, 2010.
doi:10.1146/annurev-bioeng-010510-103409

8. Sitti, M., H. Ceylan, W. Hu, J. Giltinan, M. Turan, S. Yim, and E. Diller, "Biomedical Applications of Untethered Mobile Milli/Microrobots," Proceedings of the IEEE, Vol. 103, No. 2, 205-224, 2015.
doi:10.1109/JPROC.2014.2385105

9. Kim, D. I., H. Lee, S. H. Kwon, Y. J. Sung, W. K. Song, and S. Park, "Bilayer hydrogel sheet-type intraocular microrobot for drug delivery and magnetic nanoparticles retrieval," Advanced Healthcare Materials, Vol. 9, 2000118, 2020.
doi:10.1002/adhm.202000118

10. Xie, M., W. Zhang, C. Fan, C. Wu, Q. Feng, J. Wu, Y. Li, R. Gao, Z. Li, Q. Wang, Y. Cheng, and B. He, "Bioinspired soft microrobots with precise magneto-collective control for microvascular thrombolysis," Advanced Materials, Vol. 32, 2000366, 2020.
doi:10.1002/adma.202000366

11. Xie, H., M. Sun, X. Fan, Z. Lin, W. Chen, L. Wang, L. Dong, and Q. He, "Reconfigurable magnetic microrobot swarm: Multimode transformation, locomotion, and manipulation," Science Robotics, Vol. 4, No. 28, eaav8006, 2019.
doi:10.1126/scirobotics.aav8006

12. He, Y., L. Wang, L. Zhong, Y. Liu, and W. Rong, "Transporting microobjects using a magnetic microrobot at water surfaces," 15th International Conference on Control, Automation, Robotics and Vision ICARCV, 108-112, 2018.

13. Kim, S. J., G. H. Jang, S. M. Jeon, and J. K. Nam, "A crawling and drilling microrobot driven by an external oscillating or precessional magnetic field in tubular environments," Journal of Applied Physics, Vol. 117, 17A703, 2015.
doi:10.1063/1.4906446

14. Steager, E. B., M. S. Sakar, C. Magee, M. Kennedy, A. Cowley, and V. Kumar, "Automated biomanipulation of single cells using magnetic microrobots," International Journal of Robotics Research, Vol. 32, No. 3, 346-359, 2013.
doi:10.1177/0278364912472381

15. Yu, C., J. Kim, H. Choi, J. Choi, S. Jeong, K. Cha, J. O. Park, and S. Park, "Novel electromagnetic actuation system for three-dimensional locomotion and drilling of intravascular microrobot," Sensors and Actuators, A: Physical, Vol. 161, No. 1–2, 297-304, 2010.
doi:10.1016/j.sna.2010.04.037

16. Bouchebout, S., A. Bolopion, J. O. Abrahamians, and S. Regnier, "An overview of multiple DoF magnetic actuated micro-robots," Journal of Micro-Nano Mechatronics, Vol. 7, No. 4, 97-113, 2012.
doi:10.1007/s12213-012-0048-y

17. Kummer, M. P., J. J. Abbott, B. E. Kratochvil, R. Borer, A. Sengul, and B. J. Nelson, "Octomag: An electromagnetic system for 5-DOF wireless micromanipulation," IEEE Transactions on Robotics, Vol. 26, No. 6, 1006-1017, 2010.
doi:10.1109/TRO.2010.2073030

18. Byun, D., J. Choi, K. Cha, J. O. Park, and S. Park, "Swimming microrobot actuated by two pairs of Helmholtz coils system," Mechatronics, Vol. 21, No. 1, 357-364, 2011.
doi:10.1016/j.mechatronics.2010.09.001

19. Jeong, S., H. Choi, J. Choi, C. Yu, J. oh Park, and S. Park, "Novel Electromagnetic Actuation (EMA) method for 3-dimensional locomotion of intravascular microrobot," Sensors and Actuators, A: Physical, Vol. 157, No. 1, 118-125, 2010.
doi:10.1016/j.sna.2009.11.011

20. Choi, H., J. Choi, S. Jeong, C. Yu, J. O. Park, and S. Park, "Two-dimensional locomotion of a microrobot with a novel stationary electromagnetic actuation system," Smart Materials and Structures, Vol. 18, No. 11, 115017, 2009.
doi:10.1088/0964-1726/18/11/115017

21. Choi, H., J. Choi, G. Jang, J. O. Park, and S. Park, "Two-dimensional actuation of a microrobot with a stationary two-pair coilsystem," Smart Materials and Structures, Vol. 18, No. 5, 055007, 2009.
doi:10.1088/0964-1726/18/5/055007

22. Kee, H., H. Lee, H. Choi, and S. Park, "Analysis of drivable area and magnetic force in quadrupole electromagnetic actuation system with movable cores," Measurement, Vol. 161, 107878, 2020.
doi:10.1016/j.measurement.2020.107878

23. Okada, T., S. Guo, N. Xiao, F. Qiang, and Y. Yamauchi, "Control of the wireless microrobot with multi-DOFs locomotion for medical applications," 2012 IEEE International Conference on Mechatronics and Automation ICMA, 2405-2410, 2012.
doi:10.1109/ICMA.2012.6285722

24. Li, D., F. Niu, J. Li, X. Li, and D. Sun, "Gradient-enhanced electromagnetic actuation system with a new core shape design for microrobot manipulation," IEEE Transactions on Industrial Electronics, Vol. 67, No. 6, 4700-4710, 2020.
doi:10.1109/TIE.2019.2928283

25. Ko, Y., S. Na, Y. Lee, K. Cha, S. Y. Ko, J. Park, and S. Park, "A jellyfish-like swimming mini-robot actuated by an electromagnetic actuation system," Smart Materials and Structures, Vol. 21, No. 5, 057001, 2012.
doi:10.1088/0964-1726/21/5/057001

26. Fu, Q., S. Guo, and J. Guo, "Conceptual design of a novel magnetically actuated hybrid microrobot," 2017 IEEE International Conference on Mechatronics and Automation, ICMA, 1001-1005, 2017.
doi:10.1109/ICMA.2017.8015953

27. Yesin, K. B., K. Vollmers, and B. J. Nelson, "Modeling and control of untethered biomicrorobots in a fluidic environment using electromagnetic fields," International Journal of Robotics Research, Vol. 25, No. 5–6, 527-536, 2006.
doi:10.1177/0278364906065389

28. Shiri, A. and A. Shoulaie, "A new methodology for magnetic force calculations between planar spiral coils," Progress In Electromagnetics Research, Vol. 95, 39-57, 2009.
doi:10.2528/PIER09031608

29. Marino, H., C. Bergeles, and B. J. Nelson, "Robust electromagnetic control of microrobots under force and localization uncertainties," IEEE Transactions on Automation Science and Engineering, Vol. 11, No. 1, 310-316, 2014.
doi:10.1109/TASE.2013.2265135

30. Wang, L. F., M. Dkhil, A. Bolopion, P. Rougeot, S. Regnier, and M. Gauthier, "Simulation and experiments on magnetic microforces for magnetic microrobots applications," 2013 International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale 3M-NANO, 15-20, 2013.
doi:10.1109/3M-NANO.2013.6737411

31. Ivan, I. A., G. Hwang, J. Agnus, and M. Rakotondrabe, "First experiments on MagPieR: A planar wireless magnetic and piezoelectric microrobot," 2011 IEEE International Conference on Robotics and Automation Shanghai International Conference Center, 102-108, 2011.
doi:10.1109/ICRA.2011.5979885

32. Keuning, J. D., J. D. Vriesy, L. Abelmanny, and S. Misra, "Image-based magnetic control of paramagnetic microparticles in water," 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, 421-426, 2011.

33. Beleggia, M., M. D. Graef, and Y. T. Millev, "The equivalent ellipsoid of a magnetized body," Journal of Physics D: Applied Physics, Vol. 39, No. 5, 891-899, 2006.
doi:10.1088/0022-3727/39/5/001