Vol. 95
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-08-03
Energy Efficiency Optimization for Wireless Powered Relay Networks
By
Progress In Electromagnetics Research M, Vol. 95, 25-34, 2020
Abstract
In this paper, we focus on the energy efficiency (EE) optimization for an amplify-and-forward (AF) relay network, where the energy-constrained relay harvests energy from a transmitter using power splitting (PS) scheme. We aim to maximize the EE of the network via jointly optimizing the transmit precoding, relay beamforming, and PS ratio, under the constraints of transmit power and the spectral efficiency. To solve the formulated fractional programming, we approximate the problem via two layer optimization, where the outer problem is handled by the Dinkelbach method, and the inner problem is solved by penalized difference-of-convex (DC) and constrained concave-convex procedure (CCCP). Finally, an iterative method is proposed. Simulation results demonstrate the performance of the proposed design.
Citation
Jinxin Zhu, and Jun Shao, "Energy Efficiency Optimization for Wireless Powered Relay Networks," Progress In Electromagnetics Research M, Vol. 95, 25-34, 2020.
doi:10.2528/PIERM20062401
References

1. Zhang, S., Q. Wu, S. Xu, and G. Y. Li, "Fundamental green tradeoffs: Progresses, challenges, and impacts on 5G networks," IEEE Commun. Surveys Tut., Vol. 19, No. 1, 33-56, 1st Quart. 2017.
doi:10.1109/COMST.2016.2594120

2. Zappone, A., E. Bjornson, L. Sanguinetti, and E. Jorswieck, "Globally optimal energy-efficient power control and receiver design in wireless networks," IEEE Trans. Signal Process., Vol. 65, No. 11, 2844-2859, Jun. 2017.
doi:10.1109/TSP.2017.2673813

3. Erdogan, M., E. Unal, F. O. Alkurt, Y. I. Abdulkarim, L. Deng, and M. Karaaslan, "Determination of frying sunflower oil usage time for local potato samples by using microwave transmission line based sensors measurement," Measurement, 2020.

4. Sardi, A., F. O. Alkurt, V. Ozkaner, M. Karaaslan, E. Unal, and T. Mohamed, "Investigation of microwave power limiter for industrial scientific medical band (ISM) applications," International Journal of RF and Microwave Computer-aided Engineering, 30, 2020.

5. Abdulkarim, Y. I., L. Deng, M. Karaaslan, S. Dalgac, R. H. Mahmud, F. O. Alkurt, F. F. Muhammadsharif, H. N. Awl, S. Huang, and H. Luo, "The detection of chemical materials with a metamaterial-based sensor incorporating oval wing resonators," Electronics, 2020.

6. Alkurt, F. O. and M. Karaaslan, "Characterization of tunable electromagnetic band gap material with disordered cavity resonator for X band imaging applications by resistive devices," Optical and Quantum Electronics, Vol. 51, No. 8, 279.1-279.14, 2019.
doi:10.1007/s11082-019-1995-5

7. Mei, W., Z. Chen, and J. Fang, "Artificial noise aided energy efficiency optimization in MIMOME system with SWIPT," IEEE Commun. Lett., Vol. 21, No. 8, 1795-1798, Aug. 2017.
doi:10.1109/LCOMM.2017.2697951

8. Nasir, A., H. Tuan, T. Duong, and H. V. Poor, "Secure and energy-efficient beamforming for simultaneous information and energy transfer," IEEE Trans. Wireless Commun., Vol. 16, No. 11, 7523-7537, Nov. 2017.
doi:10.1109/TWC.2017.2749568

9. Lu, Y., K. Xiong, P. Fan, Z. Ding, Z. Zhong, and K. B. Letaief, "Global energy efficiency in secure MISO SWIPT systems with non-linear power-splitting EH model," IEEE J. Sel. Areas. Commun., Vol. 37, No. 1, 216-232, Jan. 2019.
doi:10.1109/JSAC.2018.2872369

10. Ni, L., X. Da, H. Hu, Y. Yuan, Z. Zhu, and Y. Pan, "Outage-constrained secrecy energy efficiency optimization for CRNs with non-linear energy harvesting," IEEE Access, Vol. 7, 175213-175221, Dec. 2019.
doi:10.1109/ACCESS.2019.2957397

11. Yang, Y., M. Pesavento, S. Chatzinotas, and B. Ottersten, "Energy efficiency optimization in MIMO interference channels: A successive pseudoconvex approximation approach," IEEE Trans. Signal Process., Vol. 67, No. 15, 4107-4121, Aug. 2019.
doi:10.1109/TSP.2019.2923141

12. Xue, L., J. Wang, J. Li, Y. Wang, and X. Guan, "Precoding design for energy efficiency maximization in MIMO half-duplex wireless sensor networks with SWIPT," Sensors, Vol. 19, No. 22, 4923, 2019.
doi:10.3390/s19224923

13. Zhang, H., M. Feng, K. Long, G. K. Karagiannidis, V. C. M. Leung, and H. V. Poor, "Energy efficient resource management in SWIPT enabled heterogeneous networks with NOMA," IEEE Trans. Wireless Commun., Vol. 19, No. 2, 835-845, Feb. 2020.
doi:10.1109/TWC.2019.2948874

14. Dinkelbach, W., "On nonlinear fractional programming," Management Science, Vol. 13, No. 7, 492-498, Mar. 1967.
doi:10.1287/mnsc.13.7.492

15. Rostampoor, J., S. M. Razavizadeh, and I. Lee, "Energy efficient precoding design for SWIPT in MIMO two-way relay networks," IEEE Trans. Veh. Tech., Vol. 66, No. 9, 7888-7896, Sep. 2017.
doi:10.1109/TVT.2017.2681942

16. Gao, H., T. Lv, W. Wang, and N. C. Beaulieu, "Energy-efficient and secure beamforming for self-sustainable relay-aided multicast networks," IEEE Signal Process. Lett., Vol. 23, No. 11, 1509-1513, Nov. 2016.
doi:10.1109/LSP.2016.2600105

17. Heliot, F. and R. Tafazolli, "Optimal energy-efficient source and relay precoder design for cooperative MIMO-AF systems," IEEE Trans. Signal Process., Vol. 66, No. 3, 573-588, Feb. 2018.
doi:10.1109/TSP.2017.2770093

18. Zhou, X. and Q. Li, "Energy efficiency for SWIPT in MIMO two-way amplify-and-forward relay networks," IEEE Trans. Veh. Tech., Vol. 67, No. 6, 4910-4924, Jun. 2018.
doi:10.1109/TVT.2018.2819682

19. Gong, S., S. Wang, S. Chen, C. Xing, and L. Hanzo, "Robust energy efficiency optimization for amplify-and-forward MIMO relaying systems," IEEE Trans. Wireless Commun., Vol. 18, No. 9, 4326-4343, Sep. 2019.
doi:10.1109/TWC.2019.2923200

20. Li, Q. and L. Yang, "Robust optimization for energy efficiency in MIMO two-way relay networks with SWIPT," IEEE Systems Journal, Vol. 14, No. 1, 196-207, Mar. 2020.
doi:10.1109/JSYST.2019.2904721

21. Niu, H., B. Zhang, K.-K. Wong, Z. Chu, and F. Zhou, "Robust AN-aided secure beamforming and power splitting in wireless powered AF relay networks," IEEE Systems Journal, Vol. 13, No. 3, 2543-2546, Sep. 2019.

22. Nguyen, K.-G., Q.-D. Vu, L.-N. Tran, and M. Juntti, "Energy efficiency fairness for multi-pair wireless-powered relaying systems," IEEE J. Sel. Areas. Commun., Vol. 37, No. 2, 357-373, Feb. 2019.
doi:10.1109/JSAC.2018.2872377

23. Boyd, S. and L. Vandenberghe, Convex Optimization, Cambridge Univ. Press, Cambridge, UK, 2004.
doi:10.1017/CBO9780511804441

24. Grant, M. and S. Boyd, CVX: Matlab Software for Disciplined Convex Programming [Online], Avaiable: http://cvxr.com/cvx.