Vol. 94
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-08-01
A Contactless System for the Dielectric Characterization of Liquid Drops
By
Progress In Electromagnetics Research M, Vol. 94, 201-208, 2020
Abstract
The present article shows the design, implementation, and measurement of a compact contactless electronic system for sensing small volumes of liquids. The system is based on two elements: an electronic reader and a passive sensor. The proposed sensor consists of a printed monopole antenna loaded with two Split-Ring Resonators. This results in a fully-passive and single-layer low-cost design. To allow the sensing of small volumes of liquids, a 1-mm-thick adhesive Kapton layer was attached on the top layer of the sensor, and two drop tanks were added to the structure. On the other hand, the reader was designed following a layered approach, which allows us to develop compact and low-cost electronic sensor readers for the Internet of Things. The resulting reader contains a Radio-Frequency interface for the generation of detection of signals, a minicomputer, and the radiating interface. This interface includes a patch antenna that allows us to interrogate the contactless sensor within a 1-cm range. The whole system was manufactured and tested. The total dimensions of the reader are 15 cm × 15 cm, and its weight is below 1 kg. These imply a dramatic form factor and weight reductions with respect to previous readers. Moreover, the manufactured system was used to measure the dielectric permittivity of different liquid drops. Results show that only 4 ml of liquid were needed to determine the dielectric permittivity with a 0.27% error. This volume means a 98.4% reduction compared to submersible sensors which can be found in the literature.
Citation
Gabriel Galindo-Romera, Javier Carnerero-Cano, José Juan Martínez-Martínez, Alejandro Rivera-Lavado, and Francisco Javier Herraiz-Martínez, "A Contactless System for the Dielectric Characterization of Liquid Drops," Progress In Electromagnetics Research M, Vol. 94, 201-208, 2020.
doi:10.2528/PIERM20051402
References

1. Da Fonseca, N. S. S. M., R. C. S. Freire, A. Batista, G. Fontgalland, and S. Tedjini, "A passive capacitive soil moisture and environment temperature UHF RFID based sensor for low cost agricultural applications," 2017 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC), 1-4, Aguas de Lindoia, 2017.

2. Caccami, M. C., M. Y. S. Mulla, and G. Marrocco, "Wireless monitoring of breath by means of a graphene oxide-based radiofrequency identification wearable sensor," 2017 11th European Conference on Antennas and Propagation (EUCAP), 3394-3396, 2017.
doi:10.23919/EuCAP.2017.7928355

3. Mason, A., O. Korostynska, J. Louis, L. E. Cordova-Lopez, B. Abdullah, J. Greene, R. Connell, and J. Hopkins, "Non-invasive in-situ measurement of blood lactate using microwave sensors," IEEE Transactions on Biomedical Engineering, Vol. 65, No. 3, 698-705, 2017.
doi:10.1109/TBME.2017.2715071

4. Zhao, A., J. Zhang, and Y. G. Tian, "Miniaturization of UHD RFID tag antenna sensors for corrosion characterization," IEEE Sensors Journal, Vol. 17, No. 23, 7908-7916, 2017.
doi:10.1109/JSEN.2017.2751587

5. Suwalak, R., C. Phongcharoenpanich, D. Torrungrueng, and M. Krairiksh, "Determination of dielectric property of construction material products using a novel RFID sensor," Progress In Electromagnetics Research, Vol. 130, 601-617, 2012.
doi:10.2528/PIER12070107

6. Jalo, J., H. P. Sillanpaa, and R. M. Makinen, "Radio interface design for inkjet-printed biosensor applications," Progress In Electromagnetics Research, Vol. 142, 409-422, 2013.
doi:10.2528/PIER13061303

7. Galindo-Romera, G., F. J. Herraiz-Martınez, M. Gil, J. J. Martınez-Martınez, and D. Segovia-Vargas, "Submersible printed split-ring resonator-based sensor for thin-film detection and permittivity characterization," IEEE Sensors Journal, Vol. 16, No. 10, 3587-3596, 2016.
doi:10.1109/JSEN.2016.2538086

8. Carnerero-Cano, J., G. Galindo-Romera, J. J. Martınez-Martınez, and F. J. Herraiz-Martınez, "A contactless dielectric constant sensing system based on a split-ring resonator-loaded monopole," IEEE Sensors Journal, Vol. 18, No. 11, 4491-4502, 2018.
doi:10.1109/JSEN.2018.2826982

9. Sinha, M., V. Killamsetty, and B. Mukherjee, "Near field analysis of rdra loaded with split ring resonators superstrate," Microwave and Optical Technology Letters, Vol. 60, No. 2, 472-478, Wiley, 2018.
doi:10.1002/mop.30995

10. Mukherjee, B., P. Patel, and J. Mukherjee, "A novel hemispherical dielectric resonator antenna with complementary split-ring-shaped slots and resonator for wideband and low cross-polar applications," IEEE Antennas and Propagation Magazine, Vol. 57, No. 1, 120-128, Feb. 2015.
doi:10.1109/MAP.2015.2397113

11. Laxman Kumar, A., A. Ranjan, M. Chauhan, V. K. Killamsetty, and B. Mukherjee, "Circular SRR shaped UWB antenna with WiMAX band notch characteristics," 2018 IEEE Radio and Antenna Days of the Indian Ocean (RADIO), 1-2, Grand Port, 2018.

12. Juan, C. G., E. Bronchalo, B. Potelon, C. Quendo, E. Avila-Navarro, and J. M. Sabater-Navarro, "Concentration measurement of microliter-volume water-glucose solutions using Q factor of microwave sensors," IEEE Transactions on Instrumentation and Measurement, Vol. 68, 2621-2634, Jul. 2019.

13. Sharafadinzadeh, N., M. Abdolrazzaghi, and M. Daneshmand, "Highly sensitive microwave split ring resonator sensor using gap extension for glucose sensing," 2017 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications, IMWS-AMP 2017, Vol. 2018, 1-3, Institute of Electrical and Electronics Engineers Inc., Jan. 2018.

14. Tiwari, N. K., S. P. Singh, and M. J. Akhtar, "Quad band metamaterial inspired planar sensor for dispersive material testing," IEEE MTT-S International Microwave and RF Conference, IMaRC 2017, 120-123, Institute of Electrical and Electronics Engineers Inc., Aug. 2018.

15. Altintas, O., M. Aksoy, E. Unal, and M. Karaaslan, "Chemical liquid and transformer oil condition sensor based on metamaterial-inspired labyrinth resonator," Journal of the Electrochemical Society, Vol. 166, No. 6, B482-B488, 2019.
doi:10.1149/2.1101906jes

16. Galindo-Romera, G., J. Carnerero-Cano, J. J. Martınez-Martınez, and F. J. Herraiz-Martınez, "An IoT reader for wireless passive electromagnetic sensors," Sensors, Vol. 17, No. 4, 693, 2017.
doi:10.3390/s17040693

17. Hazdra, P., M. Mazanek, and J. Cermak, "Wideband rectangular microstrip patch antenna using L-probe feeding system," Radioengineering, Vol. 16, 37-41, 2007.

18. Arduino MKR1000, Available online: https://www.arduino.cc/en/Main/ArduinoMKR1000, accesed on Jun. 06, 2019.

19. Dichtl, C., P. Sippel, and S. Krohns, "Dielectric properties of 3D printed polylatic acid," Advances in Materials Science and Engineering, Vol. 2017, Hindawi, ed., Article ID 6913835, 10 pages, 2017.

20. Felıcio, J. M., C. A. Fernandes, and J. R. Costa, "Complex permittivity and anisotropy measurement of 3D-printed PLA at microwaves and millimeter-waves," 2016 22nd International Conference on Applied Electromagnetics and Communications (ICECOM), 1-6, Dubrovnik, 2016.