Vol. 89
Latest Volume
All Volumes
PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-02-04
Mutual Coupling Reduction in Microstrip Array Antenna by Employing Cut Side Patches and EBG Structures
By
Progress In Electromagnetics Research M, Vol. 89, 179-187, 2020
Abstract
This paper presents the simultaneous application of Minkowski fractal geometry and EBG structures for mutual coupling reduction in microstrip array antennas for the first time. In this approach, a modified version of Minkowski fractal geometry is applied on the patch elements, and at the same time 1D electromagnetic bandgap (EBG) structures, composed of 4 EBG elements, are placed between the array elements in a very close distance. Unlike many other coupling reduction methods, which have at least one of the issues of gain reduction or complex fabrication, the proposed method does need any via or double-sided etching and slightly increases the gain of the antenna, while an excellent reduction level of 23 dB has been achieved. To verify the concept, 2 array antennas with the spacing of λ0 and λ0/3 were fabricated and tested, showing very good agreement between predicted and measured results.
Citation
Bahare Mohamadzade, Ali Lalbakhsh, Roy B. V. B. Simorangkir, Alireza Rezaee, and Raheel M. Hashmi, "Mutual Coupling Reduction in Microstrip Array Antenna by Employing Cut Side Patches and EBG Structures," Progress In Electromagnetics Research M, Vol. 89, 179-187, 2020.
doi:10.2528/PIERM19100703
References

1. Ghosh, C. and S. K. Parui, "Reduction of mutual coupling between E-shaped microstrip antennas by using a simple microstrip I-section," Microwave and Optical Technology Letters, Vol. 55, No. 11, 2544-2549, 2013.
doi:10.1002/mop.27928

2. Chaloun, T., Ch. Waldschmidt, and W. Menzel, "Wide angle scanning cavity antenna element for mobile satcom applications at Ka band," 10th European Conference on Antennas and Propagation (EuCAP), 1-5, April 2016.

3. Shen, J., Z. Xu, and T. Zheng, "Design and mutual coupling analysis on wideband wide-angle scan step constant tapered slot antenna array," IEEE International Conference on Ultra-Wideband, Vol. 2, 1-4, September 2010.

4. Bait-Suwailam, M. M., O. F. Siddiqui, O. M. Ramahi, et al. "Mutual coupling reduction between microstrip patch antennas using slotted-complementary split-ring resonators," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 876-878, 2010.
doi:10.1109/LAWP.2010.2074175

5. Mohanna, Sh., A. Farahbakhsh, and S. Tavakoli, "Mutual coupling reduction in two-dimensional array of microstrip antennas using concave rectangular patches," Journal of Telecommunications, Vol. 2, No. 2, 64-69, 2010.

6. Cheng, W. G., G. M. Wang, J. G. Liang, X. J. Gao, and L. Zhu, "Novel ultra-compact twodimensional waveguide-based metasurface for electromagnetic coupling reduction of microstrip antenna array," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 25, 789-794, 2015.

7. Ahmed, M. I., A. Sebak, and E. A. Abdallah, "Mutual coupling reduction using defected ground structure (DGS) for array applications," 2012 15 International Symposium on Antenna Technology and Applied Electromagnetics, 1-5, Toulouse, 2012.

8. Afzal, M. U., A. Lalbakhsh, and K. P. Esselle, "Electromagnetic-wave beam-scanning antenna using near-field rotatable graded-dielectric plates," Journal of Applied Physics, Vol. 124, No. 23, 234901, 2018.
doi:10.1063/1.5049204

9. Lalbakhsh, A., M. U. Afzal, and K. P. Esselle, "Multiobjective particle swarm optimization to design a time-delay equalizer metasurface for an electromagnetic band-gap resonator antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 912-915, 2016.

10. Pirhadi, A., M. H. Rahmani, and A. Mallahzadeh, "Shaped beam array synthesis using particle swarm optimisation method with mutual coupling compensation and wideband feeding network," IET Microwaves, Antennas & Propagation, Vol. 8, No. 8, 549-550, February 14, 2014.
doi:10.1049/iet-map.2013.0104

11. Jamshidi, M. B., et al. "A novel neural-based approach for design of microstrip filters," AEU — International Journal of Electronics and Communications, 152847, 2019.
doi:10.1016/j.aeue.2019.152847

12. Mohamadzade, B. and M. Afsahi, "Mutual coupling reduction and gain enhancement in patch array antenna using a planar compact electromagnetic band gap (EBG) structures," IET Microwaves, Antennas & Propagation, Vol. 11, No. 12, 1719-1725, 2017.
doi:10.1049/iet-map.2017.0080

13. Mohamadzade, B., R. M. Hashmi, R. B. V. B. Simorangkir, R. Gharaei, S. Ur Rehman, and Q. H. Abbasi, "Recent advances in fabrication methods for flexible antennas in wearable devices: State of the art," Sensors, Vol. 19, No. 10, 2312, 2019.
doi:10.3390/s19102312

14. Simorangkir, R. B., Y. Yang, R. M. Hashmi, T. Bj¨orninen, K. P. Esselle, and L. Ukkonen, "Polydimethylsiloxane-embedded conductive fabric: Characterization and application for realization of robust passive and active flexible wearable antennas," IEEE Access, Vol. 6, 48102-48112, 2018.
doi:10.1109/ACCESS.2018.2867696

15. Olule, L., B. Kasi, N. Kumar, et al. "An aperture coupled metamaterial mushroom antenna for operation at WLAN frequency," Microwave and Optical Technology Letters, Vol. 58, No. 11, 2692-2696, 2016.
doi:10.1002/mop.30121

16. Farahani, H. S., M. Veysi, M. Kamyab, and A. Tadjalli, "Mutual coupling reduction in patch antenna arrays using a UC-EBG superstrate," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 57-59, 2010.
doi:10.1109/LAWP.2010.2042565

17. Mousavi Razi, Z., P. Rezaei, and A. Valizade, "A novel design of Fabry-Perot antenna using metamaterial superstrate for gain and bandwidth enhancement," AEU — International Journal of Electronics and Communications, Vol. 69, No. 10, 1525-1532, 2015.
doi:10.1016/j.aeue.2015.05.012

18. Naderi, M., F. B. Zarrabi, F. S. Jafari, and S. Ebrahimi, "Fractal EBG structure for shielding and reducing the mutual coupling in microstrip patch antenna array," AEU — International Journal of Electronics and Communications, Vol. 93, 261-267, 2018.
doi:10.1016/j.aeue.2018.06.028

19. Zheng, Q., Y. Fu, and N. Yuan, "A novel compact spiral electromagnetic band-gap structure," IEEE Trans. Antennas Propag., Vol. 56, No. 6, 1656-1660, 2008.
doi:10.1109/TAP.2008.923305

20. Lalbakhsh, A., A. A. L. Neyestanak, and M. Naser-Moghaddasi, "Microstrip hairpin bandpass filter using modified Minkowski fractal-shape for suppression of second harmonic," IEICE Transactions on Electronics, Vol. 95, No. 3, 378-381, 2012.
doi:10.1587/transele.E95.C.378

21. Veeramani, A., J. Vijayakrishnan, A. Arezomand, et al. "Compact S-shaped EBG structures for reduction of mutual coupling," Fifth International Conference on Advanced Computing & Communication Technologies, Haryana, India, Febrarury 2015.

22. Abushamleh, S., H. Al-Rizzo, A. Abbosh, et al., "Mutual coupling reduction between two patch antennas using a new miniaturized soft surface structure," IEEE AP-S Dig., Orlando, USA, July 2013.

23. Toolabi, M., R. Sadeghzadeh, and M. Moghadasi, "Compact meandered shape electromagnetic bandgap structure using in a microstrip array antenna application," Microwave and Optical Technology Letters, Vol. 58, No. 9, 2084-2088, 2016.
doi:10.1002/mop.29982