Vol. 84
Latest Volume
All Volumes
PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2019-09-03
Controlling Surface States of Planar Metamaterial Based on Moire Effect
By
Progress In Electromagnetics Research M, Vol. 84, 187-195, 2019
Abstract
The possibility to achieve a continuous tuning of the spectral properties in the case of two types of planar metamaterials based on the moire effect is demonstrated both experimentally and numerically. Tuning spectral characteristics are provided by changing geometric parameters of above-mentioned metamaterials. It is shown that for a one-dimensional moire metamaterial obtained by superposition of two microstrip photonic crystals with close periods, the position of the stopband in the spectrum can be controlled by changing these periods. We also consider the two-dimensional moire metamaterial formed by two identical periodic crossed structures with hexagonal symmetry. The ability to control the frequency of surface state mode by changing the crossing angle of these structures relative to each other has been shown experimentally and numerically. It is numerically demonstrated that, if the moire metamaterial is irradiated by the horn antenna, a surface wave propagating in the metamaterial plane appears in all directions beginning from its intersection point with the axis of the incident wave beam. In practice, moire metamaterials of this type can be considered as a promising prototype of microwave filters, whose spectral properties can be continuously and smoothly mechanically rearranged.
Citation
Sergey Yu. Polevoy, and Sergey I. Tarapov, "Controlling Surface States of Planar Metamaterial Based on Moire Effect," Progress In Electromagnetics Research M, Vol. 84, 187-195, 2019.
doi:10.2528/PIERM19060708
References

1. Fleischmann, M., R. Gupta, D. Weckbecker, W. Landgraf, O. Pankratov, V. Meded, and S. Shallcross, "Moiré edge states in twisted graphene nanoribbons," Phys. Rev. B, Vol. 97, 205128, 2018.
doi:10.1103/PhysRevB.97.205128

2. Wu, Z. and Y. Zheng, "Moiré chiral metamaterials," Advanced Optical Materials, Vol. 5, 1700034, 2017.
doi:10.1002/adom.201700034

3. Wu, Z., Y. Liu, E. H. Hilla, and Y. Zheng, "Chiral metamaterials via Moiré stacking," Nanoscale, Vol. 10, No. 38, 18096-18112, 2018.
doi:10.1039/C8NR04352C

4. Han, J.-H., I. Kim, J.-W. Ryu, J. Kim, J.-H. Cho, G.-S. Yim, H.-S. Park, B. Min, and M. Choi, "Rotationally reconfigurable metamaterials based on moiré phenomenon," Opt. Express, Vol. 23, 17443-17449, 2015.
doi:10.1364/OE.23.017443

5. Belozorov, D. P., A. A. Girich, and S. I. Tarapov, "Analogue of surface Tamm states in periodic structures on the base of microstrip waveguides," The Radio Science Bulletin, Vol. 345, 64-72, 2013.

6. Belozorov, D. P., A. Girich, S. V. Nedukh, A. N. Moskaltsova, and S. I. Tarapov, "Microwave analogue of Tamm states in periodic chain-like structures," Progress In Electromagnetics Research Letters, Vol. 46, 7-12, 2014.
doi:10.2528/PIERL13122502

7. Pozar, D. M., Microwave Engineering, 4th Ed., John Wiley & Sons, Inc., Hoboken, 2012.

8. Polevoy, S. Yu., "An experimental technique for estimating constitutive parameters of chiral media in the millimeter wavelength range," Telecommunications and Radio Engineering, Vol. 73, No. 8, 681-693, 2014.
doi:10.1615/TelecomRadEng.v73.i8.30