Vol. 83
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2019-07-22
Inductively-Tuned k /Ka Band RF MEMS Capacitive Switches
By
Progress In Electromagnetics Research M, Vol. 83, 51-61, 2019
Abstract
This paper designs, fabricates, and analyzes an inductively-tuned K/Ka band RF MEMS (Radio frequency micro-electro-mechanical-systems) capacitive switches. The MEMS switch employs a defect ground structure (DGS) and an air bridge. Two different MEMS switches, one with air bridges and the other not, are designed. Surface current distribution results of MEMS switches in different states are simulated and discussed. A novel actuation voltage's calculation approach of MEMS switch is proposed. Measured results indicate that the type MEMS switch's actuation voltage is 20 V. For the MEMS switch without air bridges, the isolation is more than 15 dB at 12.5~20 GHz, and the insertion loss is less than 0.28 dB up to 20 GHz. For the MEMS switch with integrated air bridges, the isolation is more than 15 dB at 18.3~40 GHz, and the insertion loss is less than 0.64 dB up to 40 GHz. Circuit models and measured results of the proposed MEMS switches show good agreements. The pull-in and release time of this switch are 99 μs and 49 μs, and the lifetime of this type of switch is more than three million.
Citation
Hao Wei, Shiwang Jia, and Zhongliang Deng, "Inductively-Tuned k /Ka Band RF MEMS Capacitive Switches," Progress In Electromagnetics Research M, Vol. 83, 51-61, 2019.
doi:10.2528/PIERM19042805
References

1. Tahir, F. A. and H. Aubert, "Equivalent electrical circuit for designing MEMS-controlled reflectarray phase shifters," Progress In Electromagnetics Research, Vol. 100, 1-12, 2010.
doi:10.2528/PIER09112506

2. Pourziad, A., S. Nikmehr, and H. Veladi, "A novel multi-state integrated RF MEMS switch for reconfigurable antennas applications," Progress In Electromagnetics Research, Vol. 139, 389-406, 2013.
doi:10.2528/PIER13012303

3. Martinez-Lopez, R., J. Rodriguez-Cuevas, A. E. Martynyuk, and J. I. Martinez-Lopez, "An active ring slot with RF MEMS switchable radial stubs for reconfigurable frequency selective surface applications," Progress In Electromagnetics Research, Vol. 128, 419-440, 2012.
doi:10.2528/PIER12041207

4. Jia, S. and F. Zhao, "Design of a MEMS reconfigurable group delay equalizer," Radio Engineering, Vol. 48, No. 4, 208-313, 2018.

5. Sharma, P., J. Perruisseau-Carrier, C. Moldovan, and A. M. Ionescu, "Electromagnetic performance of RF NEMS graphene capacitive switches," IEEE Transactions on Nanotechnology, Vol. 13, No. 1, 70-79, Jan. 2014, doi: 10.1109/TNANO.2013.2290945.
doi:10.1109/TNANO.2013.2290945

6. Fernandez-Bolanos Badia, M., E. Buitrago, and A. M. Ionescu, "RF MEMS shunt capacitive switches using AlN compared to Si3N4 dielectric," Journal of Microelectromechanical Systems, Vol. 21, No. 5, 1229-1240, Oct. 2012, doi: 10.1109/JMEMS.2012.2203101.
doi:10.1109/JMEMS.2012.2203101

7. Singh, T., "Design and finite element modeling of series-shunt configuration based RF MEMS switch for high isolation operation in K-Ka band," Journal of Computational Electronics, Vol. 14, No. 1, 167-179, Mar. 2015, doi: 10.1007/s10825-014-0636-2.
doi:10.1007/s10825-014-0636-2

8. Angira, M., G. M. Sundaram, and K. J. Rangra, "A novel approach for low insertion loss, multi-band, capacitive shunt RF-MEMS switch," Wireless Personal Communications, Vol. 83, No. 3, 2289-2301, Aug. 2015, doi: 10.1007/s11277-015-2521-0.
doi:10.1007/s11277-015-2521-0

9. Philippine, M. A., H. Zareie, O. Sigmund, G. M. Rebeiz, and T. W. Kenny, "Experimental validation of topology optimization for RF MEMS capacitive switch design," Journal of Microelectromechanical Systems, Vol. 22, No. 6, 1296-1309, Dec. 2013, doi: 10.1109/JMEMS.2013.2283241.
doi:10.1109/JMEMS.2013.2283241

10. Kaynak, M., et al. "Packaged BiCMOS embedded RF-MEMS switches with integrated inductive loads," 2012 IEEE MTT-S International Microwave Symposium Digest (MTT), 1-3, Montreal, QC, Canada, 2012, doi: 10.1109/MWSYM.2012.6259417.

11. Muldavin, J. B. and G. M. Rebeiz, "High-isolation inductively-tuned X-band MEMS shunt switches," 2000 IEEE MTT-S International Microwave Symposium Digest, Vol. 1, 169-172, Boston, MA, USA, 2000, doi: 10.1109/MWSYM.2000.860923.

12. Zhang, N., Z. Deng, and F. Sen, "CPW tunable band-stop filter using hybrid resonator and employing RF MEMS capacitors," IEEE Transactions on Electron Devices, Vol. 60, No. 8, 2648-2655, Aug. 2013, doi: 10.1109/TED.2013.2270359.
doi:10.1109/TED.2013.2270359

13. Deng, Z. L., H. Wei, S. Fan, and J. Gan, "Design and analysis a novel RF MEMS switched capacitor for low pull-in voltage application," Microsyst. Techn., 1-9, 2015, doi: 10.1007/s00542-015-2604-6.

14. Hanna, V. F., "Parameters of coplanar diretional couplers with lower ground plane," 15th European Microwave Conference, 1985, 820-825, Paris, France, 1985, doi: 10.1109/EUMA.1985.333579.
doi:10.1109/EUMA.1985.333579

15. Ghione, G. and C. Naldi, "Parameters of coplanar waveguides with lower ground plane," Electronics Letters, Vol. 19, No. 18, 734-735, Sep. 1983, doi: 10.1049/el:19830500.
doi:10.1049/el:19830500

16. Rebeiz, G. M., RF MEMS: Theory, Design, and Technology, John Wiley & Sons, 2004.