Vol. 82
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2019-06-25
WC-281 Circular Waveguide Terminator Essential in Microwave Plasma Interaction Experiments for SYMPLE
By
Progress In Electromagnetics Research M, Vol. 82, 85-94, 2019
Abstract
This work presents the novel design and development of a WC-281 circular waveguide terminator or termination for microwave plasma interaction experiments. Final waveguide terminator is designed by using the quad wedge of FR4, cone of resistive material Kanthal and Teflon discs. Kanthal is a composition of aluminium, chromium, and iron. Wedge shape geometry helps in gradually changing the impedance and thus decreasing the return loss, while resistive material Kanthal attenuates the field before reaching the receiving end. This makes it suitable for use as the finest microwave termination. Simulation is carried out by CST microwave studio. The final model of terminator decreases the reflection coefficient (S11) up to -40 dB while reduces the transmission coefficient (S21) immensely up to -63 dB at 2.85 GHz.
Citation
Jitendra Kumar, Raj Singh, and V. P. Anitha, "WC-281 Circular Waveguide Terminator Essential in Microwave Plasma Interaction Experiments for SYMPLE," Progress In Electromagnetics Research M, Vol. 82, 85-94, 2019.
doi:10.2528/PIERM19032903
References

1. Anitha, V. P., P. J. Rathod, R. Singh, and D. V. Giri, "Developmental aspects of microwave-plasma interaction experiments: Phase-1," IEEE Transactions on Plasma Science, Vol. 44, No. 10, 2226-2231, 2016.
doi:10.1109/TPS.2016.2552643

2. Anitha, V. P., A. Das, Y. C. Saxena, A. Shyam, and P. K. Kaw, "Interaction of high power microwave with plasma," IEEE International Vacuum Electronics Conference (IVEC), 481-482, 2011.
doi:10.1109/IVEC.2011.5747085

3. Yoneyama, T. and S. Nishida, "Nonradiative dielectric waveguide," Infrared and Millimeter Waves, Vol. 11, 61-98, 1984.

4. Teodoridis, V., T. Sphicopoulos, and F. E. Gardiol, "The reflection from an open-ended rectangular waveguide terminated by a layered dielectric medium," IEEE Transactions on Microwave Theory and Techniques, Vol. 33, No. 5, 359-366, 1985.
doi:10.1109/TMTT.1985.1133006

5. Rebollar, J. M., "Response of waveguides terminated in a tapered metallic wall (short paper)," IEEE Transactions on Microwave Theory and Techniques, Vol. 34, No. 1, 175-178, 1986.
doi:10.1109/TMTT.1986.1133297

6. Kumar, J., Zeeshan, R. Jaiswal, A. Baranwal, R. Singh, and V. P. Anitha, "Design and development of a circular waveguide terminator for microwave plasma interaction experiments," 32nd National Symposium on Plasma Science & Technology, Institute for Plasma Research, Gandhinagar, Gujarat, India, Nov. 2017.

7. Pozar, D. M., Microwave Engineering, John Wiley & Sons, 2009.

8. Chhotray, S. K., M. Sumathy, K. S. Bhat, and L. Kumar, "Design of a broad band matched termination for an overmoded waveguide," IEEE International Vacuum Electronics Conference (IVEC), 199-200, 2011.
doi:10.1109/IVEC.2011.5746944

9. Fusco, V. F., "Low reflection coefficient waveguide termination using an imaging method," Twelfth International Conference on Antennas and Propagation, (ICAP 2003), 716-719, Exeter, UK, 2003.
doi:10.1049/cp:20030176

10. Uhm, M., H. Lee, C. Kwak, S. Yun, and I. Yom, "Compact waveguide load with thin film resistor," PIERS Proceedings, 1402-1405, Prague, Czech Republic, July 6-9, 2015.

11. CST Microwave Studio, CST STUDIO SUITE, 2018 Darmstadt, Germany.