Vol. 78
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2019-02-11
Compact Wideband Quad-Element MIMO Antenna with Reversed S-Shaped Walls
By
Progress In Electromagnetics Research M, Vol. 78, 193-201, 2019
Abstract
We propose a compact wideband planar quad-element multiple input, multiple output (MIMO) antenna, which can cover a wide bandwidth ranging from 2.2 to 30 GHz. Novel reversed S-shaped walls provide high isolation between antenna elements within an extremely closed space, with the edge-to-edge distance between elements being only 1 mm. The simulated and measured results with respect to S parameters and radiation patterns are in good agreement. The experimental results indicate that the quad-element MIMO antenna can provide wide bandwidth (2.2-30 GHz), high isolation (with the transmission coefficients below -19 dB), and low profile (only ~λ0/40) within a compact structure (32 mm ×32 mm×4.5 mm). This compact wideband quad-element MIMO antenna with high isolation and low profile has important applications in mobile devices or other small-scaled equipment in future 5G communication.
Citation
Fei Wang, Shifeng Li, Qing Zhou, and Yu-Bin Gong, "Compact Wideband Quad-Element MIMO Antenna with Reversed S-Shaped Walls," Progress In Electromagnetics Research M, Vol. 78, 193-201, 2019.
doi:10.2528/PIERM19010201
References

1. Niu, Y., Y. Li, D. Jin, L. Su, and A. V. Vasilakos, "A survey of millimeter wave (mm Wave) communications for 5G: Opportunities and challenges," Wireless Networks, Vol. 21, No. 8, 2657-2676, Nov. 2015.
doi:10.1007/s11276-015-0942-z

2. "Microwave towards 2020: Delivering high-capacity and cost-efficient backhaul for broadband networks today and in the future,", Ericsson, Sep. 2015.
doi:10.1007/s11276-015-0942-z

3. Rappaport, T. S., et al. "Millimeter wave mobile communications for 5G cellular: It will work!," IEEE Access, Vol. 1, 335-349, May 2013.
doi:10.1109/ACCESS.2013.2260813

4. Roh, W., et al. "Millimeter-wave beamforming as an enabling technology for 5G cellular communications: Theoretical feasibility and prototype results," IEEE Communications Magazine, Vol. 52, No. 2, 106-113, Feb. 2014.
doi:10.1109/MCOM.2014.6736750

5. Rappaport, T. S., et al. "Overview of millimeter wave communications for Fifth-Generation (5G) wireless networks-with a focus on propagation models," IEEE Trans. Antennas Propag., Aug. 2017.

6. Park, J. S., et al. "A tilted combined beam antenna for 5G communications using a 28-GHz band," IEEE Antennas Wireless Propag. Lett., Vol. 15, 1685-1688, Jan. 2016.
doi:10.1109/LAWP.2016.2523514

7. Li, M., et al. "Eight-port orthogonally dual-polarized antenna array for 5G smartphone applications," IEEE Trans. Antennas Propag., Vol. 64, No. 9, 3820-3830, Sep. 2016.
doi:10.1109/TAP.2016.2583501

8. Ge, L., et al. "Polarization-reconfigurable magnetoelectric dipole antenna for 5G Wi-Fi," IEEE Antennas Wireless Propag. Lett., Vol. 16, 1504-1507, Jan. 2017.
doi:10.1109/LAWP.2016.2647228

9. Dadgarpour, A., et al. "Mutual coupling reduction in dielectric resonator antennas using metasurface shield for 60-GHz MIMO systems," IEEE Antennas Wireless Propag. Lett., Vol. 16, 477-480, Mar. 2017.
doi:10.1109/LAWP.2016.2585127

10. Farahani, M., et al. "Mutual coupling reduction in millimeter-wave MIMO antenna array using a metamaterialpolarization-rotator wall," IEEE Antennas Wireless Propag. Lett., Vol. 16, 2324-2327, Aug. 2017.
doi:10.1109/LAWP.2017.2717404

11. Mao, C. and Q. Chu, "Compact coradiator UWB-MIMO antenna with dual polarization," IEEE Trans. Antennas Propag., Vol. 62, No. 9, 4474-4480, Sep. 2014.
doi:10.1109/TAP.2014.2333066

12. Zhu, J., S. Li, B. Feng, L. Deng, and S. Yin, "Compact dual-polarized UWB quasi-self-complementary MIMO/diversity antenna with band-rejection capability," IEEE Antennas Wireless Propag. Lett., Vol. 15, 905-908, Sep. 2015.

13. Gopikrishna, M., D. D. Krishna, C. K. Anandan, P. Mohanan, and K. Vasudevan, "Design of a compact semi-elliptic monopole slot antenna for UWB systems," IEEE Trans. Antennas Propag., Vol. 57, No. 6, 1834-1837, Jun. 2009.
doi:10.1109/TAP.2009.2015850

14. Rajesh, D., P. K. Sahu, and S. K. Behera, "A compact UWB parasitic microstrip antenna with band dispensation," 2011 Int. Conf. Devices Commun., 1-5, Mesra, India, Feb. 2011.

15. Yu, C., W. Hong, L. Chiu, G. Zhai, C. Yu, W. Qin, and Z. Kuai, "Ultrawideband printed log-periodic dipole antenna with multiple notched bands," IEEE Trans. Antennas Propag., Vol. 59, No. 3, 725-732, Dec. 2010.
doi:10.1109/TAP.2010.2103010

16. Jahromi, M. N., "Novel wideband planar fractal monopole antenna," IEEE Trans. Antennas Propag., Vol. 56, No. 12, 3844-3849, Dec. 2008.
doi:10.1109/TAP.2008.2007393

17. Rahman, M. U., D.-S. Ko, and J.-D. Park, "A compact multiple notched ultra-wide band antenna with an analysis of the CSRR-TO-CSRR coupling for portable UWB applications," Sensors, Vol. 17, No. 10, 2174, 2018.
doi:10.3390/s17102174

18. Rahman, M. U., W. T. Khan, and M. Imran, "Penta-notched UWB antenna with sharp frequency edge selectivity using combination of SRR, CSRR, and DGS," Int. J. Electron. Commun., Vol. 93, 116-122, Jun. 2018.
doi:10.1016/j.aeue.2018.06.010

19. Zhao, X., S. P. Yeo, and L. C. Ong, "Planar UWB MIMO antenna with pattern diversity and isolation improvement for mobile platform based on the theory of characteristic modes," IEEE Trans. Antennas Propag., Vol. 66, No. 1, 420-425, Jan. 2018.
doi:10.1109/TAP.2017.2768083

20. Zhao, X., S. P. Yeo, and L. C. Ong, "Decoupling of inverted-F antennas with high-order modes of ground plane for 5G mobile MIMO platform," IEEE Trans. Antennas Propag., Vol. 66, No. 9, 4485-4495, Sep. 2018.
doi:10.1109/TAP.2018.2851381

21. Li, W., Y. Hei, P. M. Grubb, X. Shi, and R. T. Chen, "Compact inkjet-printed flexible MIMO antenna for UWB applications," IEEE Access, Vol. 6, 50290-50298, Sep. 2018.
doi:10.1109/ACCESS.2018.2868707

22. Iqbal, A., O. A. Saraereh, A. W. Ahmad, and S. Bashir, "Mutual coupling reduction using F-shaped stubs in UWB-MIMO antenna," IEEE Access, Vol. 6, 2755-2759, Feb. 2018.
doi:10.1109/ACCESS.2017.2785232

23. Saad, A. A. R., "Approach for improving inter-element isolation of orthogonally polarised MIMO slot antenna over ultra-wide bandwidth," Electro. Lett., Vol. 54, No. 18, 1062-1064, Sep. 2018.
doi:10.1049/el.2018.5346

24. Sarkar, D. and K. V. Srivastava, "A compact four-element MIMO/diversity antenna with enhanced bandwidth," IEEE Antennas Wireless Propag. Lett., Vol. 16, 2469-2472, May 2017.
doi:10.1109/LAWP.2017.2724439

25. Anitha, R., P. V. Vinesh, K. C. Prakash, P. Mohanan, and K. Vasudevan, "A compact quad element slotted ground wideband antenna for MIMO applications," IEEE Trans. Antennas Propag., Vol. 64, No. 10, 4550-4553, Jul. 2016.
doi:10.1109/TAP.2016.2593932

26. Hallbjörner, P., "The significance of radiation efficiencies when using S parameters to calculate the received signal correlation from two antennas," IEEE Antennas Wireless Propag. Lett., Vol. 4, 97-99, Jun. 2005.
doi:10.1109/LAWP.2005.845913

27. Chae, S. H., S. Oh, and S.-O. Park, "Analysis of mutual coupling, correlations, and TARC in WiBro MIMO array antenna," IEEE Antennas Wireless Propag. Lett., Vol. 6, 122-125, Feb. 2007.
doi:10.1109/LAWP.2007.893109