Vol. 76
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-12-12
MZR Resonators Etched in Microstrip Patch with Enhanced Bandwidth and Reduced Size
By
Progress In Electromagnetics Research M, Vol. 76, 197-205, 2018
Abstract
Two mu-zero resonance (MZR) resonators are etched in the patch of a microstrip antenna. The two MZR resonators generate two new resonances. As the MZR resonances are lower than the microstrip antenna resonance and the resonances merge with each other, size reduction and bandwidth enhancement were obtained. A prototype was designed and measured. The measured impedance bandwidth increased from 640 MHz (5.31-5.95 GHz, 11.33%) of the referenced microstrip antenna (RMA) to 940 MHz (4.99-5.93 GHz, 17.22%) of the proposed MZR loaded microstrip antenna (MZR-MA). Moreover, the patch size is decreased from 0.354λl × 0.283λl of the RMA to 0.332 λl × 0.266λl of the MZR-MA, and unidirectional radiation patterns are obtained for the microstrip patch and MZR resonances. A microstrip line based model was built to analyze the MZR resonators.
Citation
Xiao-Feng Li, Lin Peng, Jing Ma, Bin Shi, Xiaoming Li, and Xing Jiang, "MZR Resonators Etched in Microstrip Patch with Enhanced Bandwidth and Reduced Size," Progress In Electromagnetics Research M, Vol. 76, 197-205, 2018.
doi:10.2528/PIERM18110704
References

1. Caloz, C. and T. Itho, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications. (The Engineering Approach), Wiley & Sons, Hoboken, New Yersey, 2006.

2. Lai, A., K. M. K. H. Leong, and T. Itoh, "Infinite wavelength resonant antennas with monopolar radiation pattern based on periodic structures," IEEE Trans. Antennas Propag., Vol. 55, No. 3, 868-876, 2007.
doi:10.1109/TAP.2007.891845

3. Park, J. H., Y. H. Ryu, J. G. Lee, and J. H. Lee, "Epsilon negative zeroth-order resonator antenna," IEEE Trans. Antennas Propag., Vol. 55, No. 12, 3710-3712, 2007.
doi:10.1109/TAP.2007.910505

4. Park, J. H., Y. H. Ryu, and J. H. Lee, "Mu-zero resonance antenna," IEEE Trans. Antennas Propag., Vol. 58, No. 6, 1865-1875, 2010.
doi:10.1109/TAP.2010.2046832

5. Lee, S. W. and J. H. Lee, "Electrically small MNG ZOR antenna with multilayered conductor," IEEE Antennas Wireless Propag. Lett., Vol. 9, 724-724, 2010.
doi:10.1109/LAWP.2010.2057403

6. Yang, S. Y. and M. K. M. Ng, "A bisected miniaturized ZOR antenna with increased bandwidth and radiation efficiency," IEEE Antennas Wireless Propag. Lett., Vol. 12, 159-162, 2013.
doi:10.1109/LAWP.2013.2243696

7. Sharma, S. K., A. Gupta, and R. K. Chaudhary, "Epsilon negative CPW-fed zeroth-order resonating antenna with backed ground plane for extended bandwidth and miniaturization," IEEE Trans. Antennas Propag., Vol. 63, No. 11, 5197-5203, 2015.
doi:10.1109/TAP.2015.2477521

8. Niu, B. J. and Q. Y. Feng, "Bandwidth enhancement of CPW-fed antenna based on epsilon negative zeroth- and first-order resonators," IEEE Antennas Wireless Propag. Lett., Vol. 12, 1125-1128, 2013.
doi:10.1109/LAWP.2013.2280952

9. Chi, P. L. and Y. S. Shih, "Compact and bandwidth-enhanced zeroth-order resonant antenna," IEEE Antennas Wireless Propag. Lett., Vol. 14, 285-288, 2015.
doi:10.1109/LAWP.2014.2363087

10. Xiong, J., X. Q. Lin, Y. F. Yu, M. Tang, and S. Xiao, "Novel flexible dual-frequency broadside radiating rectangular patch antennas based on complementary planar ENZ or MNZ metamaterials," IEEE Trans. Antennas Propag., Vol. 60, No. 8, 3958-3961, 2012.
doi:10.1109/TAP.2012.2201115

11. Yang, F., X. X. Zhang, X. N. Ye, and Y. Rahmat-Samii, "Wide-band E-shaped patch antennas for wireless communications," IEEE Trans. Antennas Propag., Vol. 49, No. 7, 1094-1100, 2001.
doi:10.1109/8.933489

12. Wong, K. L. and W. H. Hsu, "A broad-band rectangular patch antenna with a pair of wide slits," IEEE Trans. Antennas Propag., Vol. 49, No. 9, 1345-1347, 2001.
doi:10.1109/8.951507

13. Lee, K. J. and Y. S. Kim, "Broadband shorted-patch antenna with U-shaped coupling slot," Microw. Opt. Technol. Lett., Vol. 53, No. 11, 2566-2569, 2011.
doi:10.1002/mop.26339

14. Peng, L., Y. J. Qiu, L. Y. Luo, and X. Jiang, "Bandwidth enhanced L-shaped patch antenna with parasitic element for 5.8-GHz wireless local area network applications," Wireless Personal Communications, Vol. 91, No. 3, 1163-1170, 2016.
doi:10.1007/s11277-016-3519-y

15. Nasimuddin and Z. N. Chen, "Wideband microstrip antennas with sandwich substrate," IET Microw. Antennas Propag., Vol. 2, No. 6, 538-546, 2008.
doi:10.1049/iet-map:20070284

16. Peng, L., J. Y. Xie, X. Jiang, and S. M. Li, "Wideband microstrip antenna loaded by elliptical rings," Journal of Electromagnetic Waves and Applications, Vol. 30, No. 2, 154-166, 2016.
doi:10.1080/09205071.2015.1096837

17. Malekpoor, H. and S. Jam, "Enhanced bandwidth of shorted patch antennas using folded-patch techniques," IEEE Antennas Wireless Propag. Lett., Vol. 12, 198-201, 2013.
doi:10.1109/LAWP.2013.2244555

18. Guha, D., C. Sarkar, S. Dey, and C. Kumar, "Wideband high gain antenna realized from simple unloaded single patch," IEEE Trans. Antennas Propag., Vol. 63, No. 10, 4562-4566, 2015.
doi:10.1109/TAP.2015.2456942

19. Peng, L., J. M. Mao, X. F. Li, X. Jiang, and C. L. Ruan, "Bandwidth enhancement of microstrip antenna loaded by parasitic zeroth-order resonators," Microw. Opt. Technol. Lett., Vol. 59, No. 5, 1096-1100, 2017.
doi:10.1002/mop.30471

20. Sun, K., L. Peng, Q. Li, and X. Jiang, "T/L shaped zeroth-order resonators loaded microstrip antenna with enhanced bandwidth for wireless applications," Progress In Electromagnetics Research C, Vol. 80, 157-166, 2018.
doi:10.2528/PIERC17110303

21. Peng, L., J. Y. Xie, X. Jiang, and C. L. Ruan, "Design and analysis of a new ZOR antenna with wide half power beam width (HPBW) characteristic," Frequenz, Vol. 71, No. 1-2, 41-50, 2017.
doi:10.1515/freq-2016-0142

22. Szabo, Z., G. H. Park, R. Hedge, and E. P. Li, "A unique extraction of metamaterial parameters based on Kramers-Kronig relationship," IEEE Trans. Microw. Theory Techn., Vol. 58, No. 10, 2646-2653, 2010.
doi:10.1109/TMTT.2010.2065310

23. Schneider, V. M. and H. T. Hattori, "High-tolerance power splitting in symmetric triple-mode evolution couplers," IEEE J. Quantum Electron., Vol. 36, No. 8, 923-930, 2000.
doi:10.1109/3.853545