Vol. 79
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2019-03-26
Impact of Functioning Parameters on the Wireless Power Transfer System Used for Electric Vehicle Charging
By
Progress In Electromagnetics Research M, Vol. 79, 187-197, 2019
Abstract
The design guidelines have been proposed for achieving efficient wireless Electric Vehicle (EV) charging system under non-ideal practical scenarios. The effects of operating parameters have been investigated by addressing the fundamental hurdle to the widespread usage of magnetic resonance coupling (MRC) based wireless EV charging system. From both experimental and simulated results, it has been perceived that the power transfer efficiency (PTE) depreciates rapidly as the charging condition deviates from the ideal one. It is observed that PTE can be managed to enhance from the deteriorated value to an acceptable level through proper consideration of separation air gap of the charging coils, frequency of operation with acceptable horizontal offsets, suitable coil models, position of metallic object and coil properties. To maintain the maximum PTE even under non-ideal scenario, an automated frequency tuning method has also been delineated. The corroborated experimental and simulated results can provide a complete strategic plan in the design of an efficient practical wireless power transfer system to be utilized for EV charging system.
Citation
Siddharth Sahany, Sushree Sangita Biswal, Durga Prasanna Kar, Pradyumna K. Sahoo, and Satyanarayan Bhuyan, "Impact of Functioning Parameters on the Wireless Power Transfer System Used for Electric Vehicle Charging," Progress In Electromagnetics Research M, Vol. 79, 187-197, 2019.
doi:10.2528/PIERM18092610
References

1. Ma, H., F. Balthasar, N. Tait, X. Riera-Palou, and A. Harrison, "A new comparison between the life cycle greenhouse gas emissions of battery electric vehicles and internal combustion vehicles," Energy Policy, Vol. 44, 160-173, 2012.
doi:10.1016/j.enpol.2012.01.034

2. Bowermaster, D., M. Alexander, and M. Duvall, "The need for charging: Evaluating utility infrastructures for electric vehicles while providing customer support," IEEE Electrification Magazine, Vol. 5, No. 1, 59-67, 2017.
doi:10.1109/MELE.2016.2644559

3. Kurs, A., A. Karalis, R. Moffatt, J. D. Joannopoulos, P. Fisher, and M. Soljacic, "Wireless power transfer via strongly coupled magnetic resonances," Science, Vol. 317, 83-86, 2007.
doi:10.1126/science.1143254

4. Musavi, F. and W. Eberle, "Overview of wireless power transfer technologies for electric vehicle battery charging," IET Power Electronics, Vol. 7, No. 3, 60-66, 2014.
doi:10.1049/iet-pel.2013.0047

5. Kar, D. P., P. P Nayak, S. Bhuyan, and S. K. Panda, "Study of resonance based wireless electric vehicle charging system in close proximity to metallic objects," Progress In Electromagnetic Research M, Vol. 37, 183-189, 2014.
doi:10.2528/PIERM14070503

6. Lukic, S. and Z. Pantic, "Cutting the cord: Static and dynamic inductive wireless charging of electric vehicles," IEEE Electrification Magazine, Vol. 1, No. 1, 57-64, 2013.
doi:10.1109/MELE.2013.2273228

7. Choi, J. and C. Seo, "Analysis on transmission efficiency of wireless energy transmission resonator based on magnetic resonance," Progress In Electromagnetics Research M, Vol. 19, 221-237, 2011.
doi:10.2528/PIERM11050903

8. Kar, D. P., P. P. Nayak, S. Bhuyan, and S. K. Panda, "Automatic frequency tuning wireless charging system for enhancement of efficiency," Electronics Letters, Vol. 50, No. 24, 1868-1870, 2014.
doi:10.1049/el.2014.2962

9. Choi, J. and C. Seo, "Analysis on transmission efficiency of wireless energy transmission resonator based on magnetic resonance," Progress In Electromagnetics Research M, Vol. 19, 221-237, 2011.
doi:10.2528/PIERM11050903

10. Wei, X. C., E. P. Li, Y. L. Guan, and Y. H. Chong, "Simulation and experimental comparison of different coupling mechanisms for the wireless electricity transfer," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 7, 925-934, 2009.
doi:10.1163/156939309788355180

11. Samal, S. K., D. P. Kar, P. K. Sahoo, S. Bhuyan, and S. N. Das, "Analysis of the effect of design parameters on the power transfer efficiency of resonant inductive coupling based wireless EV charging system," 2017 Innovations in Power and Advanced Computing Technologies (i-PACT), 1-4, 2017.

12. Kar, D. P., S. S. Biswal, P. K. Sahoo, P. P. Nayak, and S. Bhuyan, "Selection of maximum power transfer region for resonant inductively coupled wireless charging system," International Journal of Electronics and Communications, Vol. 84, 84-92, 2016.

13. Covic, G. A., J. T. Boys, M. L. G. Kissin, and H. G. Lu, "A three-phase inductive power transfer system for roadway-powered vehicles," IEEE Trans. Ind. Electron., Vol. 54, No. 6, 3370-3378, 2007.
doi:10.1109/TIE.2007.904025

14. Young, D. K. and Y. J. Jang, "The optimal design of the online Electric Vehicle utilizing wireless power transmission technology," IEEE Trans. Intelligent Transportation Systems, Vol. 14, No. 3, 1255-1265, 2013.
doi:10.1109/TITS.2013.2259159

15. Wheeler, H. A., "Simple inductance formulas for radio coils," Proc. IRE, Vol. 16, No. 10, 1398-1400, 1928.
doi:10.1109/JRPROC.1928.221309

16. Grover, F. W., Inductance Calculations: Working Formulas and Tables, Dover Publication, Inc., New York, 1946.

17. RamRakhyani, A. K., S. Mirabbasi, and C. Mu, "Design and optimization of resonance-based efficient wireless power delivery systems for biomedical implants," IEEE Trans. on Biomedical Circuits and Systems, Vol. 5, No. 1, 48-63, 2010.
doi:10.1109/TBCAS.2010.2072782