Vol. 77
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-12-14
A Contactless Electromagnetic Coupling Resonance-Based Volume Fraction Detection Technique for Gas-Liquid Flow
By
Progress In Electromagnetics Research M, Vol. 77, 41-50, 2019
Abstract
To obtain the volume fraction of a gas-liquid two-phase flow, a contactless electromagnetic coupling resonance based volume fraction detection (CECR-VFD) technique is proposed. By mathematical calculation and numerical simulation, it is found that the CECR-VFD method is a better alternative than the conventional electromagnetic induction based method. The distance between the excitation coil and receiving coil is firstly determined. Then the effect of the pipe length is investigated. Additionally, the relationship between the output voltage across the receiving coil and the volume fraction is studied for stratified flow and annular flow. Experiments have been carried out for validation, and the results indicate that the output voltage can be used to predict the volume fraction of a two-phase flow.
Citation
Yanyan Shi, Xiaolei Sun, Can Wang, Minghui Shen, and Meng Wang, "A Contactless Electromagnetic Coupling Resonance-Based Volume Fraction Detection Technique for Gas-Liquid Flow," Progress In Electromagnetics Research M, Vol. 77, 41-50, 2019.
doi:10.2528/PIERM18092509
References

1. Thorn, R., G. A. Johansen, and B. T. Hjertaker, "Three-phase flow measurement in the petroleum industry," Measurement Science and Technology, Vol. 24, No. 1, 1-17, 2013.
doi:10.1088/0957-0233/24/1/012003

2. Figueiredo, M. M. F., J. L. Goncalves, A. M. V. Nakashima, and R. D. M. Carvalho, "The use of an ultrasonic technique and neural networks for identification of the flow pattern and measurement of the gas volume fraction in multiphase flows," Experimental Thermal and Fluid Science, Vol. 70, 29-50, 2016.
doi:10.1016/j.expthermflusci.2015.08.010

3. Franco, Jr., E. F., R. M. Salgado, and T. Ohishi, "Analysis of two-phase flow pattern identification methodologies for embedded systems," IEEE Latin America Transactions, Vol. 16, No. 3, 718-727, 2018.
doi:10.1109/TLA.2018.8358647

4. Xie, S. W., J. Z. Gao, and Z. T. Wen, "The optimal design of the new tube inside and outside differential pressure flow meter," Applied Mechanics and Materials, Vol. 541, No. 7, 1283-1287, 2014.

5. Ghanei, S., M. Kashefi, and M. Mazinani, "Eddy current nondestructive evaluation of dual phase steel," Materials & Design, Vol. 50, No. 17, 491-496, 2013.
doi:10.1016/j.matdes.2013.03.040

6. Al-Naser, M., M. Elshafei, and A. M. Al-Sarkhi, "Artificial neural network application for multiphase flow patterns detection: A new approach," Journal of Petroleum Science and Engineering, Vol. 145, 548-564, 2016.
doi:10.1016/j.petrol.2016.06.029

7. Sun, H. J., Z. J. Liu, and L. F. Wang, "Research on the installation location of the vortex probe for gas-liquid two-phase flow with low liquid fraction," Journal of Mechanical Engineering, Vol. 50, No. 4, 167-171, 2014.
doi:10.3901/JME.2014.04.167

8. Gao, Z., Y. Yang, L. Zhai, N. Jin, and G. Chen, "A four-sector conductance method for measuring and characterizing low-velocity oil-water two-phase flows," IEEE Transactions on Instrumentation & Measurement, Vol. 65, No. 7, 1690-1697, 2016.
doi:10.1109/TIM.2016.2540862

9. Faraj, Y., M. Wang, and J. Jia, "Automated horizontal slurry flow regime recognition using statistical analysis of the ERT signal," Procedia Engineering, Vol. 102, 821-830, 2015.
doi:10.1016/j.proeng.2015.01.198

10. Wang, H. G., G. R. Zhao, and G. Z. Qiu, "Investigation the solid phase distribution in the inlet of multi-cyclone of a circulating fluidized bed by electrical capacitance tomography," Journal of Engineering Thermophysics, Vol. 35, No. 1, 109-113, 2014.

11. Madhavi, S., H. Sagar, and R. Vivek, "Void fraction measurement using electrical capacitance tomography and high speed photography," Chemical Engineering Research and Design, Vol. 94, 1-11, 2015.

12. Yang, D. Y., R. Guo, and X. R. Wang, "Application of electrical capacitance tomography on lubricating oil film in journal bearings," Proceedings of the CSEE, Vol. 32, No. 5, 187-190, 2012.

13. Hamidipour, A., T. Henriksson, and M. Hopfer, "Electromagnetic tomography for brain imaging and stroke diagnostics: Progress towards clinical application," Cells Tissues Organs, Vol. 166, No. 2, 233-246, 2018.

14. Liu, Z. W. Li, and F. Xue, "Electromagnetic tomography rail defect inspection," IEEE Transactions on Magnetics, Vol. 51, No. 10, 1-7, 2015.

15. Mayank, G., M. Prabhat, K. Ashok, and S. Anupam, "Nonuniform arrangement of emitter-receiver pairs arrangement and compact ultrasonic tomography setup," IEEE Sensors Journal, Vol. 15, No. 2, 1198-1207, 2014.

16. Fu, Y., C. Tan, and F. Dong, "Analysis of response for magnetic induction tomography with internal source," Measurement, Vol. 78, No. 1, 260-277, 2016.
doi:10.1016/j.measurement.2015.10.019

17. Dekdouk, B., C. Ktistis, and D. W. Armitage, "Absolute imaging of low conductivity material distributions using nonlinear reconstruction methods in magnetic induction tomography," Progress In Electromagnetics Research, Vol. 155, 1-18, 2016.
doi:10.2528/PIER15071705

18. Wei, H. Y. and M. Soleimani, "Two-phase low conductivity flow imaging using magnetic induction tomography," Progress in Electromagnetics Research, Vol. 131, No. 20, 99-115, 2012.
doi:10.2528/PIER12070615

19. Lu, M., H. Andy, and S. Manuchehr, "Experimental evaluation of conductive flow imaging using magnetic induction tomography," International Journal of Multiphase Flow, Vol. 72, No. 20, 198-209, 2015.

20. Roshani, G. H., E. Nazemi, and M. M. Roshani, "Identification of flow regime and estimation of volume fraction independent of liquid phase density in gas-liquid two-phase flow," Progress In Nuclear Energy, Vol. 98, 29-37, 2017.
doi:10.1016/j.pnucene.2017.02.004

21. Zhang, J. and T. Zhang, "Research on signal amplitude of the Kármán vortex street in gas-liquid two-phase flow with high void fraction," Flow Measurement & Instrumentation, Vol. 41, 158-164, 2015.
doi:10.1016/j.flowmeasinst.2014.12.001