Vol. 72
Latest Volume
All Volumes
PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-08-22
A Rotating-Magnet Based Mechanical Antenna (RMBMA) for ELF-ULF Wireless Communication
By
Progress In Electromagnetics Research M, Vol. 72, 125-133, 2018
Abstract
This paper presents some theoretical and experimental analyses of the rotating-magnet based mechanical antenna (RMBMA), a promising portable transmitting antenna for ELF-ULF (3-3000 Hz) wireless communication. Based on the Amperian current model, a theoretical model is developed to analyze the electromagnetic fields generated by RMBMA. A prototype is manufactured and measured, and the measurements coincide well with the calculations based on the established theoretical model. The results reveal that this new technique can create a constant channel condition in complex propagation environment, and an RMBMA with a small size can produce an AC magnetic field of 1 pT at hundreds of meters across lossy media, such as soil and sea water.
Citation
Shuhong Gong, Yu Liu, and Yi Liu, "A Rotating-Magnet Based Mechanical Antenna (RMBMA) for ELF-ULF Wireless Communication," Progress In Electromagnetics Research M, Vol. 72, 125-133, 2018.
doi:10.2528/PIERM18070204
References

1. Liu, C., L. G. Zheng, and Y. P. Li, "Study of elf electromagnetic fields from a submerged horizontal electric dipole positioned in a sea of finite depth," 2009 3rd IEEE International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications, 152-157, Beijing, China, Oct. 2009.

2. Barr, R., W. Ireland, and M. J. Smith, "Elf, Vlf and Lf radiation from a very large loop antenna with a mountain core," Microwaves Antennas & Propagation IEE Proceedings H, Vol. 140, No. 2, 129-134, 1993.
doi:10.1049/ip-h-2.1993.0020

3. Bickford, J. A., R. S. McNabb, P. A. Ward, et al. "Low frequency mechanical antennas: Electrically short transmitters from mechanically-actuated dielectrics," Antennas and Propagation & USNC/URSI National Radio Science Meeting, 1475-1476, San Diego, USA, Jul. 2017.

4. Manteghi, M., "A navigation and positioning system for unmanned underwater vehicles based on a mechanical antenna," Antennas and Propagation & USNC/URSI National Radio Science Meeting, 1997-1998, San Diego, USA, Jul. 2017.

5. Weldon, J., K. Jensen, and A. Zettl, "Nanomechanical radio transmitter," Physica Status Solidi (B), Vol. 245, No. 10, 2323-2325, 2008.
doi:10.1002/pssb.200879639

6. Liu, X. J., "A kind of antenna,", patent num. ZL 200920105671.9.

7. Madanayake, A., S. Choi, and M. Tarek, "Energy-efficient Ulf/Vlf transmitters based on mechanically-rotating dipoles," Engineering Research Conference, 230-235, Moratuwa, Sri Lanka, May 2017.

8. Srinivas Prasad, M. N., Y. K. Huang, and Y. E. Wang, "Going beyond Chu Harrington limit: Ulf radiation with a spinning magnet array," General Assembly and Scientific Symposium of the International Union of Radio Science (URSI GASS), Montreal, QC, Canada, Aug. 2017.

9. Selvin, S., Prasad M. N. S., Huang Y., et al. "Spinning magnet antenna for Vlf transmitting," Antennas and Propagation & USNC/URSI National Radio Science Meeting, 1477-1478, San Diego, USA, Jul. 2017.

10. Sojdehei, J. J., P. N. Wrathall, and D. F. Dinn, "Magneto-inductive (Mi) communications," MTS/IEEE Oceans 2001. An Ocean Odyssey. Conference Proceedings (IEEE Cat. No.01CH37295), 513-519, Honolulu, USA, Nov. 2001.

11. Sun, Z. and I. F. Akyildiz, "Magnetic induction communications for wireless underground sensor networks," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 7, 2426-2435, 2010.
doi:10.1109/TAP.2010.2048858

12. Ravaud, R., G. Lemarquand, S. Babic, et al. "Cylindrical magnets and coils: Fields, forces, and inductances," IEEE Transactions on Magnetics, Vol. 46, No. 9, 3585-3590, 2010.
doi:10.1109/TMAG.2010.2049026

13. Ciric, I. R., "New models for current distributions and scalar potential formulations of magnetic field problems," Journal of Applied Physics, Vol. 61, No. 8, 2709-2717, 1987.
doi:10.1063/1.337911

14. Ravaud, R. and G. Lemarquand, "Comparison of the Coulombian and Amperian current models for calculating the magnetic field produced by radially magnetized arc-shaped permanent magnets," Progress In Electromagnetics Research, Vol. 95, No. 4, 309-327, 2009.

15. Kong, J. A., Theory of Electromagnetic Waves, EMW Publishing, Cambridge, Massachusetts, USA, 2008.

16. Perdok, U. D., B. Kroesbergen, and M. A. Hilhorst, "Influence of gravimetric water content and bulk density on the dielectric properties of soil," European Journal of Soil Science, Vol. 47, No. 3, 367-371, 1996.
doi:10.1111/j.1365-2389.1996.tb01410.x

17. Hendrickx, J. M. H., B. Borchers, D. L. Corwin, et al. "Inversion of soil conductivity profiles from electromagnetic induction measurements," Soil Science Society of America Journal, Vol. 66, No. 3, 673-685, 2002.
doi:10.2136/sssaj2002.6730

18. Bradshaw, A. and K. Schleicher, "Electrical conductivity of seawater," IEEE Journal of Oceanic Engineering, Vol. 5, No. 1, 50-62, 1980.
doi:10.1109/JOE.1980.1145449

19. Cohen, M. B., U. S. Inan, and E. W. Paschal, "Sensitive broadband Elf/Vlf radio reception with the awesome instrument," IEEE Transactions on Geoscience and Remote Sensing, Vol. 48, No. 1, 3-17, 2010.
doi:10.1109/TGRS.2009.2028334

20. Harriman, S. K., E. W. Paschal, and U. S. Inan, "Magnetic sensor design for femtotesla lowfrequency signals," IEEE Transactions on Geoscience and Remote Sensing, Vol. 48, No. 1, 396-402, 2010.
doi:10.1109/TGRS.2009.2027694