Vol. 71
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-08-06
UHF Wave Propagation in Mine Shaft Environment
By
Progress In Electromagnetics Research M, Vol. 71, 157-167, 2018
Abstract
Wireless communication is very valuable in underground mines, in which channel characterization plays an important role. In this paper, both narrowband and wideband measurements at three typical ultra-high frequencies of 433, 900 and 2400 MHz in a real mine shaft are performed. To our knowledge, this is the first work focusing on radio propagation in the mine shaft environment. Important channel characteristics, such as the path loss, delay spread and the number of multipath components were extracted from the measured data and compared with that in tunnel channels. The effects of frequency and antenna position on the path loss were investigated. The relationship between the root-mean-square (RMS) delay spread and the transmitter-receiver distance was also analyzed. The results will deepen our understanding of the mine shaft channel and help to design shaft wireless systems.
Citation
Shaohua Xue, Jianping Tan, and Lixiang Shi, "UHF Wave Propagation in Mine Shaft Environment," Progress In Electromagnetics Research M, Vol. 71, 157-167, 2018.
doi:10.2528/PIERM18060406
References

1. Ranjan, A., P. Misra, B. Dwivedi, and H. B. Sahu, "Studies on propagation characteristics of radio waves for wireless networks in underground coal mines," Wireless Personal Communications, Vol. 97, No. 12, 1-14, 2007.

2. Hrovat, A., G. Kandus, and T. Javornik, "A survey of radio propagation modeling for tunnels," IEEE Communications Surveys & Tutorials, Vol. 16, No. 2, 658-669, 2014.
doi:10.1109/SURV.2013.091213.00175

3. Zhou, X., Z. Zhong, X. Bian, R. He, R. Sun, and K. Guan, "Measurement and analysis of channel characteristics in reflective environments at 3.6 GHz and 14.6 GHz," Applied Science, Vol. 7, No. 2, 165, 2017.
doi:10.3390/app7020165

4. Sun, Z. and I. F. Akyildiz, "Channel modeling and analysis for wireless networks in underground mines and road tunnels," IEEE Transactions on Communications, Vol. 58, No. 6, 1758-1768, 2010.
doi:10.1109/TCOMM.2010.06.080353

5. Zhou, C., "Ray tracing and modal methods for modeling radio propagation in tunnels with rough walls," IEEE Transactions on Antennas & Propagation, Vol. 65, No. 5, 2624-2634, 2007.
doi:10.1109/TAP.2017.2677398

6. Fono, V. A. and L. Talbi, "Modeling the effect of periodic wall roughness on the indoor radio propagation channel," Progress In Electromagnetics Research M, Vol. 49, 167-179, 2016.
doi:10.2528/PIERM16042802

7. Rana, M. M. and A. S. Mohan, "Segmented-locally-one dimensional FDTD (LOD-FDTD) method for large complex tunnel environments," IEEE Transactions on Magnetics, Vol. 28, No. 2, 223-226, 2012.
doi:10.1109/TMAG.2011.2177075

8. Zhang, Y. P., "Novel model for propagation loss prediction in tunnels," IEEE Transactions on Vehicular Technology, Vol. 52, No. 5, 1308-1314, 2003.
doi:10.1109/TVT.2003.816647

9. Hrovat, A., G. Kandus, and T. Javornik, "Four-slope channel model for path loss prediction in tunnels at 400 MHz," IET Microwaves Antennas & Propagation, Vol. 4, No. 5, 571-582, 2010.
doi:10.1049/iet-map.2009.0159

10. Fan, J., S. Guo, X. Zhou, et al. "Faster-than-nyquist signaling: An overview," IEEE Access, Vol. 5, No. 99, 1925-1940, 2017.
doi:10.1109/ACCESS.2017.2657599

11. Adewumi, A. S. and O. Olabisi, "Characterization and modeling of vegetation effects on UHF propagation through a long forested channel," Progress In Electromagnetics Research Letters, Vol. 73, 9-16, 2018.
doi:10.2528/PIERL17092004

12. Arslan, H. and S. Yarkan, "Statistical wireless channel propagation characteristics in underground mines at 900 MHz: A comparative analysis with indoor channels," Ad Hoc Networks, 2011.

13. Nerguizian, C., C. L. Despins, S. Affes, and M. Djadel, "Radio-channel characterization of an underground mine at 2.4 GHz," IEEE Transactions on Wireless Communications, Vol. 4, No. 5, 2441-2453, 2005.
doi:10.1109/TWC.2005.853899

14. Hakem, N., G. Delisle, and Y. Coulibaly, "Radio-wave propagation into an underground mine environment at 2.4 GHz, 5.8 GHz and 60 GHz," The 8th European Conference on Antennas and Propagation, 3592-3595, 2014.

15. Boutin, M., A. Benzakour, C. L. Despins, and S. Affes, "Radio wave characterization and modeling in underground mine tunnels," IEEE Transactions on Antennas & Propagation, Vol. 56, No. 2, 540-549, 2008.
doi:10.1109/TAP.2007.913144

16. Gonzalez-Plaza, A., C. Calvo-Ramirez, C. Briso-Rodriguez, et al. "Propagation at mmW band in metropolitan railway tunnels," Wireless Communications & Mobile Computing, 1-10, 2018.
doi:10.1155/2018/7350494

17. Zhang, L., C. Briso, J. R. O. Fernandez, J. I. Alonso, et al. "Delay spread and electromagnetic reverberation in subway tunnels and stations," IEEE Antennas & Wireless Propagation Letters, Vol. 15, No. 4, 585-588, 2016.
doi:10.1109/LAWP.2015.2462022

18. Hussain, I., F. Cawood, and R. V. Olst, "Effect of tunnel geometry and antenna parameters on through-the-air communication systems in underground mines: Survey and open research areas," Physical Communication, Vol. 23, 84-94, 2017.
doi:10.1016/j.phycom.2017.03.002

19. Bashir, S., "Effect of antenna position and polarization on UWB propagation channel in underground mines and tunnels," IEEE Transactions on Antennas & Propagation, Vol. 62, No. 9, 4771-4779, 2014.
doi:10.1109/TAP.2014.2334352

20. Li, D. and J. Wang, "Effect of antenna parameters on the field coverage in tunnel environments," International Journal of Antennas and Propagation, Vol. 2016, 1-10, 2016.

21. Varela, M. S. and M. G. Sanchez, "RMS delay and coherence bandwidth measurements in indoor radio channels in the UHF band," IEEE Transactions on Vehicular Technology, Vol. 50, No. 2, 515-525, 2001.
doi:10.1109/25.923063

22. Dabin, J. A., N. Ni, A. M. Haimovich, et al. "The effects of antenna directivity on path loss and multipath propagation in UWB indoor wireless channels," IEEE Conference on Ultra Wideband Systems and Technologies, 305-309, 2003.
doi:10.1109/UWBST.2003.1267853

23. Mao, X. H. and Y. H. Lee, "Comparison of propagation along a lift shaft in two complex environments," Progress In Electromagnetics Research B, Vol. 36, 337-355, 2012.
doi:10.2528/PIERB11091911

24. Zhang, Y. P., Z. R. Jiang, T. S. Ng, and J. H. Sheng, "Measurements of the propagation of UHF radio waves on an underground railway train," IEEE Transactions on Vehicular Technology, Vol. 49, No. 4, 1342-1347, 2000.
doi:10.1109/25.875255

25. Li, J., Y. Zhao, J. Zhang, et al. "Radio channel measurements and analysis at 2.4/5 GHz in subway tunnels," China Communication, Vol. 12, No. 1, 36-45, 2015.
doi:10.1109/CC.2015.7084382

26. Moreno, J., I. Val, A. Arriola, et al. "2.6GHz intra-consist channel model for train control and management systems," IEEE Access, Vol. 5, 23052-23059, 2007.

27. Wu, X., Y. Shen, and Y. Tang, "Measurement and modeling of co-time co-frequency full-duplex self-interference channel of the indoor environment at 2.6 GHz," Acta Electronica Sinica, Vol. 43, No. 1, 1-6, 2015.

28. Zhang, Y. P. and Y. Hwang, "Characterization of UHF radio propagation channels in tunnel environments for microcellular and personal communications," IEEE Transactions on Vehicular Technology, Vol. 47, No. 1, 283-296, 1998.
doi:10.1109/25.661054

29. Geng, S., J. Kivinen, and P. Vainikainen, "Propagation characterization of wideband indoor radio channels at 60 GHz," IEEE International Symposium on Microwave, Antennas, Propagation and EMC Technologies for Wireless Communications, 314-317, 2005.