Vol. 70
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-07-19
Cogging Reduction in Permanent Magnet Machines via Skewed Slot Opening and Its Analytical Modeling
By
Progress In Electromagnetics Research M, Vol. 70, 167-176, 2018
Abstract
Air-gap magnetic energy variation with angular position produces cogging torque, which may results in mechanical vibration, acoustic noise, and torque ripple. Various cogging reduction methods of design modifications viz. skewed magnets, skewed slot, asymmetrical displacement of magnets/slots etc. are reported in the literature. All such methods adversely affect machine performance in terms of air-gap magnetic field, back emf, and induced voltage. This paper introduces the cogging torque reduction by skewing of slot opening. In order to obtain machine performance, the no load magnetic field of the proposed machine is determined using combined methods of two-dimensional subdomain analytical analysis method and multislice method. The machine is considered as a stack of slices along axial direction. The adjacent slices differ in relative location of slot openings. The analytical field solution of each slice is obtained by use of subdomain method, and algebraic summation of slices is taken as field solution of actual machine. The analytical analysis developed is compared with finite element analysis (FEA). The close agreement of analytical results with FEA results confirms the validation of analytical solution. Furthermore, the machine parameters viz. cogging torque, back emf, and induced voltage are evaluated analytically, and results are compared with FEA solution. To demonstrate the effect of skewed slot opening on machine's performance, a machine of same rating without skewing of slot opening is investigated, and their performances are compared.
Citation
Md Motiur Reza, and Rakesh Kumar Srivastava, "Cogging Reduction in Permanent Magnet Machines via Skewed Slot Opening and Its Analytical Modeling," Progress In Electromagnetics Research M, Vol. 70, 167-176, 2018.
doi:10.2528/PIERM18041903
References

1. Wanjiku, J., M. Khan, P. S. Barendse, and P. Pillay, "Influence of slot openings and tooth profile on cogging torque in axial-flux pm machines," IEEE Transactions on Industrial Electronics, Vol. 62, No. 12, 7578-7589, 2015.
doi:10.1109/TIE.2015.2458959

2. Zhu, Z. and D. Howe, "Analytical prediction of the cogging torque in radial-field permanent magnet brushless motors," brushless motors, Vol. 28, No. 2, 1371-1374, 1992.

3. Xia, C., Z. Zhang, and Q. Geng, "Analytical modeling and analysis of surface mounted permanent magnet machines with skewed slots," IEEE Transactions on Magnetics, Vol. 51, No. 5, 1-8, 2015.

4. Zhu, Z. and D. Howe, "Influence of design parameters on cogging torque in permanent magnet machines," IEEE Transactions on Energy Conversion, Vol. 15, No. 4, 407-412, 2000.
doi:10.1109/60.900501

5. Hwang, S.-M., J.-B. Eom, G.-B. Hwang, W.-B. Jeong, and Y.-H. Jung, "Cogging torque and acoustic noise reduction in permanent magnet motors by teeth pairing," IEEE Transactions on Magnetics, Vol. 36, No. 5, 3144-3146, 2000.
doi:10.1109/20.908714

6. Hwang, S.-M., J.-B. Eom, Y.-H. Jung, D.-W. Lee, and B.-S. Kang, "Various design techniques to reduce cogging torque by controlling energy variation in permanent magnet motors," IEEE Transactions on Magnetics, Vol. 37, No. 4, 2806-2809, 2001.
doi:10.1109/20.951313

7. Bianchi, N. and S. Bolognani, "Design techniques for reducing the cogging torque in surface-mounted pm motors," IEEE Transactions on Industry Applications, Vol. 38, No. 5, 1259-1265, 2002.
doi:10.1109/TIA.2002.802989

8. Dosiek, L. and P. Pillay, "Cogging torque reduction in permanent magnet machines," IEEE Transactions on Industry Applications, Vol. 43, No. 6, 1565-1571, 2007.
doi:10.1109/TIA.2007.908160

9. Yang, Y., X. Wang, R. Zhang, T. Ding, and R. Tang, "The optimization of pole arc coefficient to reduce cogging torque in surface-mounted permanent magnet motors," IEEE Transactions on Magnetics, Vol. 42, No. 4, 1135-1138, 2006.
doi:10.1109/TMAG.2006.871452

10. Hwang, C., S. John, and S. Wu, "Reduction of cogging torque in spindle motors for cd-rom drive," IEEE Transactions on Magnetics, Vol. 34, No. 2, 468-470, 1998.
doi:10.1109/20.667794

11. Wu, L., Z. Zhu, D. Staton, M. Popescu, and D. Hawkins, "An improved subdomain model for predicting magnetic field of surface-mounted permanent magnet machines accounting for toothtips," IEEE Transactions on Magnetics, Vol. 47, No. 6, 1693-1704, 2011.
doi:10.1109/TMAG.2011.2116031

12. Zhu, Z., L. Wu, and Z. Xia, "An accurate subdomain model for magnetic field computation in slotted surface-mounted permanent-magnet machines," IEEE Transactions on Magnetics, Vol. 46, No. 4, 1100-1115, 2010.
doi:10.1109/TMAG.2009.2038153

13. Zhu, L., S. Jiang, Z. Zhu, and C. Chan, "Comparison of alternate analytical models for predicting cogging torque in surface-mounted permanent magnet machines," Vehicle Power and Propulsion Conference, 2008. VPPC’08. IEEE, 1-6, IEEE, 2008.

14. Wu, L., Z. Zhu, D. A. Staton, M. Popescu, and D. Hawkins, "Comparison of analytical models of cogging torque in surface-mounted pm machines," IEEE Transactions on Industrial Electronics, Vol. 59, No. 6, 2414-2425, 2012.
doi:10.1109/TIE.2011.2143379

15. Zhu, Z. and D. Howe, "Instantaneous magnetic field distribution in brushless permanent magnet dc motors. iii. effect of stator slotting," IEEE Transactions on Magnetics, Vol. 29, No. 1, 143-151, 1993.
doi:10.1109/20.195559

16. Zarko, D., D. Ban, and T. A. Lipo, "Analytical calculation of magnetic field distribution in the slotted air gap of a surface permanent-magnet motor using complex relative air-gap permeance," IEEE Transactions on Magnetics, Vol. 42, No. 7, 1828-1837, 2006.
doi:10.1109/TMAG.2006.874594

17. Zarko, D., D. Ban, and T. A. Lipo, "Analytical solution for cogging torque in surface permanent-magnet motors using conformal mapping," IEEE Transactions on Magnetics, Vol. 44, No. 1, 52-65, 2008.
doi:10.1109/TMAG.2007.908652

18. Zarko, D., D. Ban, and T. A. Lipo, "Analytical solution for electromagnetic torque in surface permanent-magnet motors using conformal mapping," IEEE Transactions on Magnetics, Vol. 45, No. 7, 2943-2954, 2009.
doi:10.1109/TMAG.2009.2014689

19. Boughrara, K., R. Ibtiouen, D. Zarko, O. Touhami, and A. Rezzoug, "Magnetic field analysis of external rotor permanent-magnet synchronous motors using conformal mapping," IEEE Transactions on Magnetics, Vol. 46, No. 9, 3684-3693, 2010.
doi:10.1109/TMAG.2010.2047508

20. Ackermann, B. and R. Sottek, "Analytical modeling of the cogging torque in permanent magnet motors," Electrical Engineering (Archiv fur Elektrotechnik), Vol. 78, No. 2, 117-125, 1995.
doi:10.1007/BF01245643

21. Boroujeni, S. T. and V. Zamani, "A novel analytical model for no-load, slotted, surface-mounted pm machines: air gap flux density and cogging torque," IEEE Transactions on Magnetics, Vol. 51, No. 4, 1-8, 2015.
doi:10.1109/TMAG.2014.2347010

22. Lubin, T., S. Mezani, and A. Rezzoug, "2-d exact analytical model for surface-mounted permanentmagnet motors with semi-closed slots," IEEE Transactions on Magnetics, Vol. 47, No. 2, 479-492, 2011.
doi:10.1109/TMAG.2010.2095874

23. Zhu, Z., S. Ruangsinchaiwanich, Y. Chen, and D. Howe, "Evaluation of superposition technique for calculating cogging torque in permanent-magnet brushless machines," IEEE Transactions on Magnetics, Vol. 42, No. 5, 1597-1603, 2006.
doi:10.1109/TMAG.2005.861831

24. Zhu, Z., S. Ruangsinchaiwanich, and D. Howe, "Synthesis of cogging-torque waveform from analysis of a single stator slot," IEEE Transactions on Industry Applications, Vol. 42, No. 3, 650-657, 2006.
doi:10.1109/TIA.2006.872930