Vol. 69
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-06-06
The Analysis and Experimental Investigation of Electromagnetic Characteristics on High Speed Circuit PDN with Multislots
By
Progress In Electromagnetics Research M, Vol. 69, 77-86, 2018
Abstract
The electromagnetic characteristics of a high speed IC power distribution network (PDN) are of vital important with the rapid increasing of operation speed and scale down CMOS manufacturing size, in particular, the fundamental electromagnetic theory including impedance and loop inductance of various designed IC power-plane structures. In addition, the area occupancy ratio of slot (AOROS) of irregular parallel-plane structures with multi-slots plays a key role in PDN impedance and loop inductance, where the influence of AOROS on impedance and loop inductance is investigated for various structures. Moreover, experimental work is carried out to validate the influence of AOROS on impedance and loop inductance of the PDN. The simulation and measurement of impedance are performed up to 10 GHz, and a good agreement is obtained between the simulation and experiment.
Citation
Yan Li, Zhiyi Gao, Panpan Zuo, Wenyuan Cao, Hong-Xing Zheng, and Erping Li, "The Analysis and Experimental Investigation of Electromagnetic Characteristics on High Speed Circuit PDN with Multislots," Progress In Electromagnetics Research M, Vol. 69, 77-86, 2018.
doi:10.2528/PIERM18032103
References

1. Jingook, K., W. Songping, W. Hanfeng, Y. Takita, H. Takeuchi, K. Arak, F. Gang, and F. Jun, "Improved target impedance and IC transient current measurement for power distribution network design," 2010 IEEE International Symposium on Electromagnetic Compatibility (EMC), 445-450, 2010.
doi:10.1109/ISEMC.2010.5711316

2. Ye, H. Q., X. C.Wei, and E. P. Li, "A novel semi-analytical solution of impedance of grid-type power distribution network," IEEE International Symposium on Electromagnetic Compatibility (EMC), 16-22, Aug. 2015.

3. Johns, P. B. and R. L. Beurle, "Numerical solution of 2-dimensional scattering problems using a transmission-line matrix," Proceedings of the IEEE, Vol. 59, No. 9, 1203-1208, Sept. 1971.

4. Roy, S. and A. Dounavis, "Macromodeling of multilayered power distribution network based on multiconductor transmission line approach," IEEE Transactions on Comp. Packag. Manufact. Technol. B, Vol. 3, 1047, Jun. 2013.
doi:10.1109/TCPMT.2013.2245377

5. Wu, H. H., J. W. Meyer, K. Lee, and A. Barber, "Accurate power supply and ground plane models," IEEE Transactions on Antennas and Propagation, Vol. 22, No. 3, 259-266, 1999.

6. Ruehli, A. E., G. Antonini, J. Esch, J. Ekman, A. Mayo, and A. Orland, "Non-orthoganal PEEC formulation for time and frequency domain EM and circuit modeling," Proc. of the IEEE Int. Symp. on Electromagnetic Compatibility, Vol. 45, 167-176, May 2003.
doi:10.1109/TEMC.2003.810804

7. Wei, L., K. Shringarpure, A. Ruehli, E. Wheeler, and J. Drewniak, "Plane-pair PEEC models for PDN using sub meshing," 2014 IEEE 23rd Conference on Electrical Performance of Electronic Packaging and Systems (EPEPS), May 11, 2015.

8. Dhatt, G., E. Lefrancois, and G. Touzot, Finite Element Method, John Wiley & Sons, 2012.
doi:10.1002/9781118569764

9. Zhou, F., A. E. Ruehli, and J. Fan, "Efficient mid-frequency plane inductance computation," 2010 IEEE International Symposium on Electromagnetic Compatibility (EMC), 831-836, 2010.
doi:10.1109/ISEMC.2010.5711387

10. Ruehli, A., "Equivalent circuit models for three dimensional multiconductor systems," IEEE Trans. Microwave Theory and Techniques, Vol. 22, No. 3, 216-221, Mar. 1974.
doi:10.1109/TMTT.1974.1128204

11. Li, L., A. E. Ruehli, and J. Fan, "Accurate and efficient computation of power plane pair inductance," 2012 IEEE 21st Conference on Electrical Performance of Electronic Packaging and Systems (EPEPS), 167-170, 2012.
doi:10.1109/EPEPS.2012.6457869

12. Wolff, P. K. and A. E. Ruehli, "Inductance computations for complex three-dimensional geometries," Int. Symp. on Circuits and Sys., 16-19, IC CAD, Chicago, Il, 1981.

13., CST Microwave studio, 2016, [Online], Available: https://www.cst.com/.

14., Standard for Validation of Computational Electromagnetics Computer Modeling and Simulation --- Part 1, IEEE Standard P1597, 2008.

15. Duffy, A. P., A. J. M. Martin, A. Orlandi, G. Antonini, T. M. Benson, and M. S.Woolfson, "Feature selective validation (FSV) for validation of computational electromagnetics (CEM). Part I --- The FSV method," IEEE Trans. Electromagn. Compat., Vol. 48, No. 3, 449-459, Aug. 2006.
doi:10.1109/TEMC.2006.879358

16. Orlandi, A., A. P. Duffy, B. Archambeault, G. Antonini, D. E. Coleby, and S. Connor, "Feature selective validation (FSV) for validation of computational electromagnetics (CEM). Part II --- Assessment of FSV performance," IEEE Trans. Electromagn. Compat., Vol. 48, No. 3, 460-467, Aug. 2006.
doi:10.1109/TEMC.2006.879360