Vol. 68
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-05-07
A Current-Mode-Logic-Based Frequency Divider with Ultra-Wideband and Octet Phases
By
Progress In Electromagnetics Research M, Vol. 68, 89-98, 2018
Abstract
This paper presents a comprehensive analysis of a current-mode-logic frequency divider (CML FD) and the theoretical locking range of CML FD. The locking range of the CML divider is proportional to the injection ratio. By adding a resistive load, the locking range of the CML divider is not limited by the Q value of the LC resonant circuit. The minimum input power to drive the divider is achieved when the output frequency is equal to the self-oscillation frequency. To verify the properties of wideband and multi-phase outputs, the ÷4 octet-phase frequency divider based on a two-stage CML FD was implemented using a 0.18 μm CMOS process. It has a locking range of 1 GHz to 8 GHz with a 12.6 mW dc power consumption, and the phase deviation between the octet output signals is less than 4.7°. With an ultra-wide frequency bandwidth and accurate octet outputs, the proposed divider is suitable for multi-phase generator applications.
Citation
Si-Da Tang, Yu-Sheng Lin, Wei-Hsiang Huang, Chun-Lin Lu, and Yeong-Her Wang, "A Current-Mode-Logic-Based Frequency Divider with Ultra-Wideband and Octet Phases," Progress In Electromagnetics Research M, Vol. 68, 89-98, 2018.
doi:10.2528/PIERM18032102
References

1. Mazzanti, A., M. Sosio, M. Repossi, and F. Svelto, "A 24 GHz subharmonic direct conversion receiver in 65 nm CMOS," IEEE Trans. Circuits Syst. I, Reg. Papers, Vol. 58, No. 1, 88-97, 2011.
doi:10.1109/TCSI.2010.2071711

2. Kim, S. and L. E. Larson, "A 44-GHz SiGeBiCMOS phase-shifting sub-harmonics up-converter for phase-array transmitters," IEEE Trans. Microw. Theory Tech., Vol. 58, No. 5, 1089-1099, 2010.
doi:10.1109/TMTT.2010.2045567

3. Mazzanti, A., P. Uggetti, and F. Svelto, "Analysis and design of injection-locked LC dividers for quadrature generation," IEEE J. Solid-State Circuits, Vol. 39, No. 9, 1425-1433, 2004.
doi:10.1109/JSSC.2004.831596

4. Alioto, M. and G. Palumbo, "Power-aware design techniques for nanometer MOS current-mode logic gates: A design framework," IEEE Circuits and System Magazine, 42-61, Fourth quarter, 2006.

5. Alioto, M., R. Mita, and G. Palumbo, "Design of high-speed power-efficient MOS current-mode logic frequency dividers," IEEE Trans. Circuits Syst. II, Vol. 53, No. 11, 1165-1169, 2006.
doi:10.1109/TCSII.2006.882350

6. Zhou, C., L. Zang, L. Zhang, Z. Yu, and H. Qian, "Injection-locking-based power and speed optimization of CML dividers," IEEE Trans. Circuits Syst. II, Vol. 58, No. 9, 565-569, 2011.
doi:10.1109/TCSII.2011.2161163

7. Jang, S. L., T. C. Kung, and C. W. Hsue, "Wide-locking range divide-by-4 injection-locked frequency divider using linear mixer approach," IEEE Microw. Wireless Compon. Lett., Vol. 27, No. 4, 398400, 2017.
doi:10.1109/LMWC.2017.2678441

8. Lee, S. H., S. L. Jang, and Y. H. Chung, "A low voltage divide-by-4 injection-locked frequency divider with quadrature outputs," IEEE Microw. Wireless Compon. Lett., Vol. 17, No. 5, 373-375, 2007.
doi:10.1109/LMWC.2007.895718

9. Singh, U. and M. M. Green, "High-frequency CML clock dividers in 0.13-μm CMOS operating up to 38 GHz," IEEE J. Solid-State Circuits, Vol. 40, No. 8, 1658-1661, 2005.
doi:10.1109/JSSC.2005.852420

10. Cheema, H. H., R. Mahmoudi, M. A. T. Sandulean, and A. van Roermund, "A Ka band, static, MCML frequency divider in standard 90-nm-CMOS LP for 60 GHz applications," Proc. IEEE Radio Frequency Integrated Circuits Symp., 541-544, 2007.

11. Jang, S. L. and C. C. Fu, "Wide locking range divide-by-4 LC-tank injection-locked frequency divider using series-mixers," Analog Integr. Circuits Signal Process., Vol. 78, No. 2, 523-528, 2014.
doi:10.1007/s10470-013-0171-2