Vol. 68
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-05-07
Corrosion Effects on the Magnetic Behavior of Magnetic Circuit of an Induction Machine
By
Progress In Electromagnetics Research M, Vol. 68, 79-87, 2018
Abstract
In this paper, the effect of corrosion on the magnetic behavior of a magnetic material used as a magnetic circuit in the induction machines is studied. With this objective, the magnetic properties of the samples with corrosion and without corrosion were evaluated by the study of hysteresis loops using a homemade vibrating sample magnetometer (VSM). The magnetic parameters extracted from the hysteresis loops such as saturation magnetization, coercive, remanent magnetization, squareness ratio, magnetic permeability, and hysteresis area were analyzed. It was shown that more energy is required to demagnetize the sample with corrosion than the sample without corrosion, and the hysteresis loss in the case of the sample with corrosion is more than the case of the sample without corrosion. These mean that when the corrosion is presented in the magnetic circuits of the induction machine, the hysteresis loss increases, consequentially reducing the machine efficiency.
Citation
M'hamed Ouadah, Omar Touhami, Rachid Ibtiouen, Mohammed Khorchef, and Djilali Allou, "Corrosion Effects on the Magnetic Behavior of Magnetic Circuit of an Induction Machine," Progress In Electromagnetics Research M, Vol. 68, 79-87, 2018.
doi:10.2528/PIERM18022702
References

1. Agamloh, E. B., "Induction motor efficiency," IEEE Industry Applications Magazine, Vol. 17, No. 6, 20-28, 2011.
doi:10.1109/MIAS.2011.942298

2. Aminu, M., P. Barendse, and A. Khan, "Efficiency estimation of induction machines using nonintrusive no-load low voltage test," 2017 IEEE Energy Conversion Congress and Exposition (ECCE), 3171-3178, 2017.
doi:10.1109/ECCE.2017.8096577

3. Verucchi, C. J., R. Ruschetti, and G. Kazlauskas, "High efficiency electric motors: Economic and energy advantages," IEEE Latin America Transactions, Vol. 11, No. 6, 1325-1331, 2013.
doi:10.1109/TLA.2013.6710379

4. Al-Badri, M. and P. Pillay, "Evaluation of measurement uncertainty in induction machines efficiency estimation," 2014 IEEE International Conference on Power and Energy (PECon), 288-292, 2015.

5. Misir, O., S. M. Raziee, N. Hammouche, C. Klaus, R. Kluge, and B. Ponick, "Prediction of losses and efficiency for three-phase induction machines equipped with combined Star-Delta windings," IEEE Transactions on Industry Applications, Vol. 53, No. 4, 3579-3587, 2017.
doi:10.1109/TIA.2017.2693958

6. Dominguez, J. R., C. Mora-Soto, S. Ortega-Cisneros, J. J. R. Panduro, and A. G. Loukianov, "Copper and core loss minimization for induction motors using high-order sliding-mode control," IEEE Transactions on Industrial Electronics, Vol. 59, No. 7, 2877-2889, 2012.
doi:10.1109/TIE.2011.2171170

7. Gmyrek, Z., A. Boglietti, and A. Cavagnino, "Estimation of iron losses in induction motors: Calculation method, results, and analysis," IEEE Transactions on Industrial Electronics, Vol. 57, No. 1, 161-171, 2010.
doi:10.1109/TIE.2009.2024095

8. Roy, R., K. K. Prabhakar, and P. Kumar, "Core-loss calculation in different parts of induction motor," IET Electric Power Applications, Vol. 11, No. 9, 1664-1674, 2017.
doi:10.1049/iet-epa.2017.0369

9. Dems, M. and K. Komeza, "The influence of electrical sheet on the core losses at no-load and full-load of small power induction motors," IEEE Transactions on Industrial Electronics, Vol. 64, No. 3, 2433-2442, 2017.
doi:10.1109/TIE.2016.2587817

10. Liang, Y., X. Bian, H. Yu, and C. Li, "Finite-element evaluation and eddy-current loss decrease in stator end metallic parts of a large double-canned induction motor," IEEE Transactions on Industrial Electronics, Vol. 62, No. 11, 6779-6785, 2015.
doi:10.1109/TIE.2015.2438051

11. Yamazaki, K. and W. Fukushima, "Loss analysis of induction motors by considering shrink fitting of stator housings," IEEE Transactions on Magnetics, Vol. 51, No. 3, 2015.

12. Cheaytani, J., A. Benabou, A. Tounzi, M. Dessoude, L. Chevallier, and T. Henneron, "End-region leakage fluxes and losses analysis of cage induction motors using 3-D finite-element method," IEEE Transactions on Magnetics, Vol. 51, No. 3, 2015.
doi:10.1109/TMAG.2014.2365355

13. Liang, Y.-P., Y.-L. Hu, X. Liu, and C.-X. Li, "Calculation and analysis of can losses of canned induction motor," IEEE Transactions on Industrial Electronics, Vol. 61, No. 9, 4531-4538, 2014.
doi:10.1109/TIE.2013.2290762

14. Abshinova, M., "Factors affecting magnetic properties of Fe-Si-Al and Ni-Fe-Mo alloys," Procedia Engineering, Vol. 76, 35-44, 2014.
doi:10.1016/j.proeng.2013.09.245

15. O’Handley, R. C., Modern Magnetic Materials: Principles and Investigations, Wiley Interscience, 2000.

16. Mc Currie, R. A., Ferromagnetic Materials Structure and Properties, Academic Press, 1994.

17. Shirakata, Y., N. Hidaka, M. Ishitsuka, A. Teramoto, and T. Ohmi, "High permeability and low loss Ni-Fe composite material for high-frequency applications," IEEE Transactions on Magnetics, Vol. 44, No. 9, 2100-2106, 2008.
doi:10.1109/TMAG.2008.2001073