Vol. 65
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-03-07
Design of a Bandwidth-Enhanced Planar Printed Antenna with Two Dipoles
By
Progress In Electromagnetics Research M, Vol. 65, 111-119, 2018
Abstract
This paper presents a broadband planar printed antenna comprising two dipoles with different lengths and a transition structure of microstrip (MS) to coplanar stripline (CPS). These two dipoles are serially connected through CPS. By adding trapezoid and stepped patches, the dipole elements are modified for enhancing the impedance matching of the antenna. In addition, a tapered transition is adopted in the CPS to achieve improved impedance matching. The current work shows a good agreement between measured and simulated results. The measured bandwidth is from 2.43 to 8.04 GHz for VSWR≤2, corresponding to 107.2% fractional bandwidth. Measured peak gain≥4.0 dBi is obtained in the whole operating band.
Citation
Yu-Chun Guo, Lei Chang, Jian-Qiang Zhang, and Xiao Long Yang, "Design of a Bandwidth-Enhanced Planar Printed Antenna with Two Dipoles," Progress In Electromagnetics Research M, Vol. 65, 111-119, 2018.
doi:10.2528/PIERM18012002
References

1. Bilgic, M. M. and K. Yegin, "Wideband offset slot-coupled patch antenna array for X/Ku-band multimode radars," IEEE Antennas Wireless Propag. Lett., Vol. 13, 157-160, 2014.
doi:10.1109/LAWP.2013.2296911

2. Huang, H. C., J. C. Lu, and P. Hsu, "A compact dual-band printed Yagi-Uda antenna for GNSS and CMMB applications," IEEE Trans. Antennas Propag., Vol. 63, No. 5, 2342-2348, 2015.
doi:10.1109/TAP.2015.2406914

3. Jehangir, S. S. and M. S. Sharawi, "A single layer semi-ring slot Yagi-like MIMO antenna system with high front-to-back ratio," IEEE Trans. Antennas Propag., Vol. 65, No. 2, 937-942, 2017.
doi:10.1109/TAP.2016.2633938

4. Kan, H. K., R. B. Waterhouse, A. M. Abbosh, and M. E. Bialkowski, "Simple broadband planar CPW-fed quasi-Yagi antenna," IEEE Antennas Wireless Propag. Lett., Vol. 6, 18-20, 2007.
doi:10.1109/LAWP.2006.890751

5. Rezaeieh, S. A., M. A. Antoniades, and A. M. Abbosh, "Miniaturized planar Yagi antenna utilizing capacitively coupled folded reflector," IEEE Antennas Wireless Propag. Lett., Vol. 16, 1977-1980, 2017.
doi:10.1109/LAWP.2017.2690973

6. Wang, H., Y. Chen, F. Liu, and X. Shi, "Wideband and compact quasi-Yagi antenna with bowtie-shaped drivers," Electron. Lett., Vol. 49, No. 20, 1262-1264, 2013.
doi:10.1049/el.2013.2454

7. Abbosh, A., "Ultra-wideband quasi-Yagi antenna using dual-resonant driver and integrated balun of stepped impedance," IEEE Trans. Antennas Propag., Vol. 61, No. 7, 3885-3888, 2013.
doi:10.1109/TAP.2013.2257642

8. Nguyen, P. T., A. Abbosh, and S. Crozier, "Wideband and compact quasi-Yagi antenna integrated with balun of microstrip to slotline transitions," Electron. Lett., Vol. 49, No. 2, 88-89, 2013.
doi:10.1049/el.2012.3192

9. Yeo, J. and J. I. Lee, "Broadband series-fed two dipole array antenna with an integrated balun for mobile communication applications," Microw. Opt. Tech. Lett., Vol. 54, No. 9, 2166-2168, 2012.
doi:10.1002/mop.27009

10. Yeo, J. and J. I. Lee, "Modified series-fed two-dipole-array antenna with reduced size," IEEE Antennas Wireless Propag. Lett., Vol. 12, 214-217, 2013.
doi:10.1109/LAWP.2013.2245297

11. Yeo, J. and J. I. Lee, "Bandwidth enhancement of double-dipole quasi-Yagi antenna using stepped slotline structure," IEEE Antennas Wireless Propag. Lett., Vol. 15, 694-697, 2016.
doi:10.1109/LAWP.2015.2469677