Vol. 62
Latest Volume
All Volumes
PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2017-11-09
A Compact CPW Fed UWB Antenna with Quad Band Notch Characteristics for ISM Band Applications
By
Progress In Electromagnetics Research M, Vol. 62, 79-88, 2017
Abstract
A quad band-notched compact ultra-wideband (UWB) patch antenna to operate on the industry, scientific, and medical (ISM) bands are presented in this study. A modified hexagonal patch vertex-fed with a coplanar waveguide (CPW) is fabricated on an FR-4 substrate with size of 43 × 28 × 1.6 mm3 and fractional bandwidth of 133%. The compact antenna operates at a frequency of 2.45 GHz, which is often required for the efficient performance of ISM utilisation. The existing bands share the same bandwidth as that of UWB systems. Therefore, a notched band at 3 GHz for worldwide interoperability for microwave access (WiMAX), and a further resonance band at 2.45 GHz for ISM are generated by implementing a meander-line strip on the antenna. Furthermore, the design demonstrates a couple of F-shaped slots and an inverted diamond-shaped slot on the patch. Moreover, a pair of J-shaped slots is loaded on the ground plane. The downlink C-band, wireless local area network (WLAN), and downlink X-band are rejected by the proposed slots, respectively. The current distribution, gain, radiation efficiency, and quad notched parameters of the proposed antenna are studied by using CST software. The demonstrated prototype covers an ISM band at (2.2 GHz-2.6 GHz) with a return loss of -23.45 dB and omnidirectional radiation patterns. A good agreement is observed between measured and the simulated results. This paper has presented a solution for both interference and miniaturised issues.
Citation
Raed Abdulkareem Abdulhasan, Rozlan Alias, and Khairun Nidzam Ramli, "A Compact CPW Fed UWB Antenna with Quad Band Notch Characteristics for ISM Band Applications," Progress In Electromagnetics Research M, Vol. 62, 79-88, 2017.
doi:10.2528/PIERM17090803
References

1. Taki, H., S. Azou, A. Hamie, A. Al Housseini, A. Alaeddine, and A. Sharaiha, "On phaser-based processing of impulse radio UWB over fiber systems employing SOA," Optical Fiber Technology, Vol. 36, 33-40, 2017.
doi:10.1016/j.yofte.2017.02.001

2. Boutejdar, A. and W. Abd Ellatif, "A novel compact UWB monopole antenna with enhanced bandwidth using triangular defected microstrip structure and stepped cut technique," Microwave and Optical Technology Letters, Vol. 58, No. 6, 1514-1519, 2016.
doi:10.1002/mop.29820

3. Ali, W. A., A. I. Zaki, and M. H. Abdou, "Design and fabrication of rectangular ring monopole array with parasitic elements for UWB applications," Microwave and Optical Technology Letters, Vol. 58, No. 9, 2268-2273, 2016.
doi:10.1002/mop.30021

4. Abdulhasan, R. A., R. Alias, A. Awaleh, and A. Mumin, "Design of circular patch microstrip ultra wideband antenna with two notch filters," International Conference on Computer, Communications, and Control Technology (I4CT), 464-467, IEEE, Sarawak, Malaysia, Apr. 21-23, 2015.

5. Li, G., H. Zhai, T. Li, X. Y. Ma, and C.-H. Liang, "Design of a compact UWB antenna integrated with GSM/WCDMA/WLAN bands," Progress In Electromagnetics Research, Vol. 136, 409-419, 2013.
doi:10.2528/PIER12120604

6. Vyas, K., A. K. Sharma, and P. K. Singhal, "Design and analysis of two novel CPW-fed dual band-notched UWB antennas with modified ground structures," Progress In Electromagnetics Research C, Vol. 49, 159-170, 2014.
doi:10.2528/PIERC14031710

7. Su, J., W. Ren, F. Lin, and X. Zhang, "A small UWB antenna with triple band-notched characteristics," IEEE International Conference on Microwave and Millimeter Wave Technology (ICMMT), 280-282, IEEE, Beijing, China, Jun. 5, 2016.

8. Singh, P., A. R. Khanna, and H. Singh, "UWB antenna with dual notched band for WiMAX and WLAN applications," Microwave and Optical Technology Letters, Vol. 59, No. 4, 792-797, 2017.
doi:10.1002/mop.30388

9. Labade, R. P., S. B. Deosarkar, and N. Pisharoty, "Compact integrated bluetooth UWB antenna with quadruple bandnotched characteristics," International Journal of Electrical and Computer Engineering (IJECE), Vol. 5, No. 6, 1433-1440, 2015.

10. Bakariya, P. S., S. Dwari, and M. Sarkar, "Printed ultrawideband monopole antenna with four notch band," Wireless Personal Communications, Vol. 84, No. 4, 2989-2999, 2015.
doi:10.1007/s11277-015-2777-4

11. Sarijari, M. A., A. Lo, M. S. Abdullah, S. H. De Groot, I. G. Niemegeers, and R. A. Rashid, "Coexistence of heterogeneous and homogeneous wireless technologies in smart grid-home area network," 19th IEEE International Conference on Parallel and Distributed Systems (ICPADS), 576-581, IEEE, Seoul Korea, Dec. 15-18, 2013.

12. Donelli, M. and P. Febvre, "An inexpensive reconfigurable planar array for Wi-Fi applications," Progress In Electromagnetics Research C, Vol. 28, 71-81, 2012.
doi:10.2528/PIERC12012304

13. Viani, F., L. Lizzi, M. Donelli, D. Pregnolato, G. Oliveri, and A. Massa, "Exploitation of parasitic smart antennas in wireless sensor networks," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 7, 993-1003, 2010.
doi:10.1163/156939310791285227

14. Ray, K., "Design aspects of printed monopole antennas for ultra-wide band applications," International Journal of Antennas and Propagation, Vol. 2008, No. 713858, 1-8, 2008.
doi:10.1155/2008/713858

15. Ma, T.-G. and S.-J. Wu, "Ultrawideband band-notched folded strip monopole antenna," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 9, 2473-2479, 2007.
doi:10.1109/TAP.2007.904137