Vol. 59
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2017-08-06
The Weakened Weibel Electromagnetic Instability of Ultra-Intense MeV Electron Beams in Multi-Layer Solid Structure
By
Progress In Electromagnetics Research M, Vol. 59, 103-109, 2017
Abstract
The Weibel instability of intense and collimated MeV fast electron beams in multi-layer structure is investigated. It is found that the electromagnetic instability of fast electron beams can be significantly suppressed by this structure. A strong magnetic field will be created at the interfaces between materials with different resistivities as these fast electrons are injected into this structure. It obstructs the transverse movement of the fast electrons and confines them to propagate along the interfaces. In consequence, the positive feedback loop between magnetic field perturbation and electrons density perturbation is broken, and the Weibel instability is thus weakened. Furthermore, the calculated results for Au/Si multi-layer structure by a hybrid Particle in Cell code have proven this weakening effect on the Weibel instability of intense fast electron beams. Because of the high energy-density delivered by the MeV electrons, these results indicate applications in high-energy physics, such as radiography, fast electron beam focusing, and perhaps fast ignition.
Citation
Leng Liao, and Ruiqiang Zhao, "The Weakened Weibel Electromagnetic Instability of Ultra-Intense MeV Electron Beams in Multi-Layer Solid Structure," Progress In Electromagnetics Research M, Vol. 59, 103-109, 2017.
doi:10.2528/PIERM17052204
References

1. Perry, M. D. and G. Mourou, "Terawatt to petawatt subpicosecond lasers," Science, Vol. 264, 917-924, 1994.
doi:10.1126/science.264.5161.917

2. Gibbon, P., Short Pulse Laser Interactions with Matter: An Introduction, College Press, London, 2005.
doi:10.1142/p116

3. Park, H. S., D. M. Chambers, H. K. Chung, R. J. Clarke, et al. "High-energy K alpha radiography using high-intensity, short-pulse lasers," Phys. Plasmas, Vol. 13, 056309, 2006.
doi:10.1063/1.2178775

4. Kodama, R., P. A. Norreys, K. Mima, A. E. Dangor, et al. "Fast heating of ultrahigh-density plasma as a step towards laser fusion ignition," Nature, Vol. 412, 798-802, 2001.
doi:10.1038/35090525

5. Atzeni, S. and J. Meyer-tar-Vehn, Inertial Fusion-beam Plasma Interaction, Hydrodynamic, Dense Plasma Physics, Clarendon, Oxford, 2003.

6. Tabak, M., J. Hammer, M. E. Glinsky, et al. "Ignition and high-gain with ultrapowerful lasers," Phys. Plasmas, Vol. 1, 1626-1634, 1994.
doi:10.1063/1.870664

7. Weibel, E. S., "Spontaneously growing transverse waves in a plasma due to an anisotropic velocity distribution," Phys. Rev. Lett., Vol. 2, 83-84, 1959.
doi:10.1103/PhysRevLett.2.83

8. Green, J. S., V. M. Ovchinnikov, R. G. Evans, K. U. Akli, et al. "Effect of laser intensity on fast-electron-beam divergence in solid-density plasmas," Phys. Rev. Lett., Vol. 100, 015003, 2008.
doi:10.1103/PhysRevLett.100.015003

9. Kodama, R., Y. Sentoku, Z. L. Chen, et al. "Plasma devices to guide and collimate a high density of MeV electrons," Nature, Vol. 432, 1005-1008, 2004.
doi:10.1038/nature03133

10. Lancaster, K. L., J. S. Green, D. S. Hey, et al. "Measurements of energy transport patterns in solid density laser plasma interactions at intensities of 5 × 1020 W cm(-2)," Phys. Rev. Lett., Vol. 98, 125002, 2007.
doi:10.1103/PhysRevLett.98.125002

11. Santos, J. J., F. Amiranoff, S. D. Baton, et al. "Fast electron transport in ultraintense laser pulse interaction with solid targets by rear-side self-radiation diagnostics," Phys. Rev. Lett., Vol. 89, 207-213, 2002.
doi:10.1103/PhysRevLett.89.025001

12. Sentoku, Y., K. Mima, S. Kojima, et al. "Magnetic instability by the relativistic laser pulses in overdense plasmas," Phys. Plasmas, Vol. 7, 689-695, 2000.
doi:10.1063/1.873853

13. Stephens, R. B., R. A. Snavely, Y. Aglitskiy, et al. "K-alpha fluorescence measurement of relativistic electron transport in the context of fast ignition," Phys. Rev. E, Vol. 69, 039901, 2004.
doi:10.1103/PhysRevE.69.066414

14. Robinson, A. P. L., M. Sherlock, and P. A. Norreys, "Artificial collimation of fast-electron beams with two laser pulses," Phys. Rev. Lett., Vol. 100, 025002, 2008.
doi:10.1103/PhysRevLett.100.025002

15. Bell, A. R. and R. J. Kingham, "Resistive collimation of electron beams in laser-produced plasmas," Phys. Rev. Lett., Vol. 91, 035003, 2003.
doi:10.1103/PhysRevLett.91.035003

16. McKenna, P., A. P. L. Robinson, D. Neely, et al. "Effect of lattice structure on energetic electron transport in solids irradiated by ultraintense laser pulses," Phys. Rev. Lett., Vol. 106, 185004, 2011.
doi:10.1103/PhysRevLett.106.185004

17. Ramakrishna, B., S. Kar, A. P. L. Robinson, et al. "Laser-driven fast electron collimation in targets with resistivity boundary," Phys. Rev. Lett., Vol. 105, 135001, 2010.
doi:10.1103/PhysRevLett.105.135001

18. Mishra, S. K., P. Kaw, A. Das, et al. "Stabilization of beam-weibel instability by equilibrium density ripples," Phys. Plasmas, Vol. 21, 012108, 2014.
doi:10.1063/1.4862175

19. Chatterjee, G., P. K. Singh, S. Ahmed, et al. "Macroscopic transport of mega-ampere electron currents in aligned carbon-nanotube arrays," Phys. Rev. Lett., Vol. 108, 235005, 2012.
doi:10.1103/PhysRevLett.108.235005

20. Spitzer, L. and R. Harm, "Transport phenomena in a completely ionized gas," Phys. Rev., Vol. 89, 977-981, 1953.
doi:10.1103/PhysRev.89.977