Vol. 58
Latest Volume
All Volumes
PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2017-07-24
Tuning of Microwave Absorption Properties and Electromagnetic Interference (EMI) Shielding Effectiveness of Nanosize Conducting Black-Silicone Rubber Composites Over 8-18 GHz
By
Progress In Electromagnetics Research M, Vol. 58, 193-204, 2017
Abstract
In this paper, studies on broadband microwave absorption and electromagnetic shielding effectiveness are reported in flexible rubber composites with low filler content of nanosize conducting carbon over 8-18 GHz frequency range of electromagnetic spectrum. Rubber based composites are prepared by loading of 1-15 wt% nanosize conducting Carbon Black (CB) in silicone rubber matrix. Effect of percentage loading of nanosize CB on DC conductivity, dielectric & microwave absorption properties and electromagnetic Shielding Effectiveness (SE) of silicone rubber composites is studied. The percolation threshold is achieved at low concentration (3 wt%) of CB in composites. The observed complex permittivity values revealed that composites with concentration of 5 wt% CB can provide more than 90% microwave absorption (Reflection Loss > -10 dB) over 8-18 GHz at composite thickness of 1.9-2.7 mm. Further, composites with concentration of 15 wt% of CB shows -40 dB SE over the broad frequency range 8-18 GHz at thickness 2.8 mm. The effect of composite thickness on microwave absorption properties and shielding effectiveness is also analyzed. Thus, the prepared rubber composites with suitable concentration of nanosize CB as filler may be used as microwave absorber in stealth applications as well as for EMI shielding of electronic equipments in various civilian and military areas.
Citation
Raj Kumar Jani, Manoj Kumar Patra, Lokesh Saini, Anuj Shukla, Chandra Pal Singh, and Sampat Raj Vadera, "Tuning of Microwave Absorption Properties and Electromagnetic Interference (EMI) Shielding Effectiveness of Nanosize Conducting Black-Silicone Rubber Composites Over 8-18 GHz ," Progress In Electromagnetics Research M, Vol. 58, 193-204, 2017.
doi:10.2528/PIERM17022704
References

1. Knott, E. F., J. F. Shaeffer, and M. T. Tully, Radar Cross Section, Artech House Inc., Norwood, 1993.
doi:10.1007/978-1-4684-9904-9

2. Vinoy, K. J. and R. M. Jha, Radar Absorbing Materials: From Theory to Design and Characterization, Kluwer Academic Publishers, Boston, MA, 1996.
doi:10.1007/978-1-4613-0473-9

3. Qin, F. and C. Brosseau, "A review and analysis of microwave absorption in polymer composites filled with carbonaceous particles," Journal of Applied Physics, Vol. 111, 061301-24, 2012.
doi:10.1063/1.3688435

4. Singh, V. K., A. Shukla, M. K. Patra, L. Saini, R. K. Jani, S. R. Vadera, and N. Kumar, "Microwave absorbing properties of thermally reduced graphene oxide/nitrile butadiene rubber composite," Carbon, Vol. 50, 2202-2208, 2012.
doi:10.1016/j.carbon.2012.01.033

5. Bhattacharya, P., S. Sahoo, and C. K. Das, "Microwave absorption behavior of MWCNT based nanocomposites in X-band region," Express Polymer Letters, Vol. 7212-223, 2013.

6. Zhang, W., Y. Xu, L. Yuan, J. Cai, and D. Zhang, "Microwave absorption and shielding property of composites with FeSiAl and carbonaceous materials as filler," Journal of Material Science and Technology, Vol. 28, 913-919, 2012.
doi:10.1016/S1005-0302(12)60150-9

7. Xu, Y., D. Zhang, J. Cai, L. Yuan, and W. Zhang, "Effect of multi-walled carbon nanotubes on the electromagnetic absorbing characteristics of composites filled with Carbonyl Iron Particles," Journal of Material Science and Technology, Vol. 28, 34-40, 2012.
doi:10.1016/S1005-0302(12)60020-6

8. Joseph, N., C. Janardhanan, and M. T. Sebastian, "Electromagnetic interference shielding properties of butyl rubber-single walled carbon nanotube composites," Composite Science and Technology, Vol. 101, 139-144, 2014.
doi:10.1016/j.compscitech.2014.07.002

9. Savi, P., M. Miscuglio, M. Giorcelli, and A. Tagliaferro, "Analysis of microwave absorbing properties of epoxy MWCNT composites," Progress In Electromagnetic Research Letters, Vol. 44, 63-69, 2014.
doi:10.2528/PIERL13102803

10. Saib, A., L. Bednarz, R. Daussin, C. Bailly, X. Lou, J.M. Thomassin, C. Pagnoulle, C. Detrembleur, R. Jerome, and I. Huynen, "Carbon nanotube composites for broadband microwave absorbing materials," IEEE Transactions on Microwave Theory and Techniques, Vol. 54, 2745-2754, 2006.
doi:10.1109/TMTT.2006.874889

11. Al-Hartomy, O. A., A. Al-Ghamdi, N. Dishovsky, R. Shtarkova, V. Iliev, I. Mutlay, and F. El-Tantawy, "Dielectric and microwave properties of natural rubber based nanocomposites containing grapheme," Materials Sciences and Applications, Vol. 3, 453-459, 2012.
doi:10.4236/msa.2012.37064

12. Liu, X., Z. Zhang, and Y. Wu, "Absorption properties of carbon black/silicon carbide microwave absorbers," Composites: Part B, Vol. 42, 326-329, 2011.
doi:10.1016/j.compositesb.2010.11.009

13. Wang, M., Y. Duan, S. Liu, X. Li, and Z. Ji, "Absorption properties of carbonyl-iron/carbon black double-layer microwave absorber," Journal of Magnetism and Magnetic Materials, Vol. 321, 3442-3446, 2009.
doi:10.1016/j.jmmm.2009.06.040

14. Vinayasree, S., M. A. Soloman, V. Sunny, P. Mohanan, P. Kurian, P. A. Joy, and M. R. Anantharaman, "Flexible microwave absorbers based on barium hexaferrite, carbon black, and nitrile rubber for 2-12 GHz applications," Journal of Applied Physics, Vol. 116, 24902-24907, 2014.
doi:10.1063/1.4886382

15. Wang, X., "Investigation of electromagnetic shielding effectiveness of nano-structural carbon black-ABS composites," Journal of Electromagnetic Analysis and Applications, Vol. 3, 160-164, 2011.
doi:10.4236/jemaa.2011.35026

16. Dinesh, P. G., N. M. Renukappa, T. Pasang, M. Dinesh, and C. Rangananthaiah, "Effect of nanofillers on conductivity and electromagnetic interference shielding effectiveness of high density polyethylene and polypropylene nanocomposites," European Journal of Advances in Engineering and Technology, Vol. 1, 16-28, 2014.

17. Das, N. C., D. Khastgir, T. C. Chaki, and A. Chakraborty, "Electromagnetic interference shielding effectiveness of carbon black and carbon fiber filled EVA and NR based composites," Composites Part A: Applied Science and Manufacturing, Vol. 31, 1069-1081, 2001.
doi:10.1016/S1359-835X(00)00064-6

18. Li, L. and D. D. L. Chung, "Electrical and mechanical properties of electrically conductive polyethersulfone composite," Composites, Vol. 25, 215-224, 1994.
doi:10.1016/0010-4361(94)90019-1

19. Chung, D. D. L., "Electromagnetic interference shielding effectiveness of carbon materials," Carbon, Vol. 39, 279-285, 2001.
doi:10.1016/S0008-6223(00)00184-6

20. Shui, X. and D. D. L. Chung, "Nickel filament polymer-matrix composites with low surface impedance and high electromagnetic interference shielding effectiveness," Journal of Electronic Materials, Vol. 26, 928-934, 1997.
doi:10.1007/s11664-997-0276-4

21. Nicolson, A. M. and G. F. Ross, "Measurement of the intrinsic properties of materials by time domain techniques," IEEE Trans. on Instrumentation and Measurements, Vol. 19, 377, 1970.
doi:10.1109/TIM.1970.4313932

22. Janzen, J., "On the critical conductive filler loading in antistatic composites," Journal of Applied Physics, Vol. 46, 966-969, 1975.
doi:10.1063/1.321629

23. Donnet, J. B., R. C. Bansal, and M. J. Wang, Carbon Black, 2nd Ed., Marcel Dekker Inc., New York, 1993.

24. Stauffer, D. and A. Aharony, Introduction to Percolation Theory, 2nd Ed., Taylor & Francis, London, 1994.

25. Li, H., X. Qian, T. Li, and Y. Ni, "Percolation for coated conductive paper: electrical conductivity as a function of volume fraction of graphite and carbon black," BioResources, Vol. 10, 4877-4885, 2015.

26. Foulger, S. H., "Reduced percolation threshold of immiscible conductive blends," Journal of Polymer Science Part: B Polymer Physics, Vol. 37, 1899-1910, 1999.
doi:10.1002/(SICI)1099-0488(19990801)37:15<1899::AID-POLB14>3.0.CO;2-0

27. Belberg, I., "Tunneling and non-universal conductivity in composite materials," Physical Review Letters, Vol. 59, 1305, 1987.
doi:10.1103/PhysRevLett.59.1305

28. Wessling, B., "Electrical conductivity in heterogeneous polymer systems V(1): Further experimental evidence for a phase transition at the critical volume concentration," Polymer Engineering Science, Vol. 31, 1200-6, 1991.
doi:10.1002/pen.760311608

29. Achour, M. E., M. Malhi, J. L. Miane, F. Carmona, and F. Lahjomri, "Microwave properties of carbon black-epoxy resin composites and their simulation by means of mixture laws," Journal of Applied Polymer Science, Vol. 73, 969, 1999.
doi:10.1002/(SICI)1097-4628(19990808)73:6<969::AID-APP14>3.0.CO;2-1

30. Kim, S. S., S. B. Jo, H. I. Gueon, K. K. Choi, J. M. Kim, and K. S. Churn, "Complex permeability and permittivity and microwave absorption of ferrite-rubber composite in X-band frequencies," IEEE Trans. on Magnetics, Vol. 27, 5462, 1991.
doi:10.1109/20.278872

31. Paul, C. R., Introduction to Electromagnetic Compatibility, 2nd Ed., John Wiley and Sons, New York, 2005.
doi:10.1002/0471758159

32. Saini, P., V. Choudhary, B. P. Singh, R. B. Mathur, and S. K. Dhawan, "Enhanced microwave absorption behavior of polyaniline-CNT/polystyrene blend in 12.4-18 GHz range," Synthetic Metals, Vol. 161, 1522-1526, 2011.
doi:10.1016/j.synthmet.2011.04.033

33. Pande, S., B. P. Singh, R. B. Mathur, T. L. Dhami, P. Saini, and S. K. Dhawan, "Improved electromagnetic interference shielding properties of MWCNT-PMMA composite using layered structure," Nanoscale Research Letters, Vol. 4, 327-334, 2009.
doi:10.1007/s11671-008-9246-x