Vol. 55
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2017-03-20
Computation Model of Shielding Effectiveness of Electromagnetic Shielding Fabrics with Seaming Stitch
By
Progress In Electromagnetics Research M, Vol. 55, 85-93, 2017
Abstract
The influence of seaming stitches on the shielding effectiveness (SE) of electromagnetic shielding (EMS) fabric is huge, but there is not an ideal computation model for the SE of the EMS fabric with the seaming stitch at present. This paper proposes a computation model of the SE based on the equivalent seaming gap. Firstly, a structure model of the equivalent seaming gap is constructed according to the equivalent dielectric principle. The computation method of the structural size of the equivalent seaming gap model is determined by the parameters of the stitch length, number of the stitch type, needle number, and sewing thread. A computation model of the SE based on the equivalent seaming gap structure is built according to the EMS theory. The method of the correction coefficient of the model determination is given. Finally, the samples with seaming stitches are made to test the SE using the waveguide method. The computation results with the proposed model are compared with the experimental ones. The results show that the proposed model can well calculate the SE of the EMS fabric with the seaming stitch. The study in this paper can provide a foundation for further study of the influence of seaming stitches on the SE of the EMS fabric and possesses reference significance for the design, production, evaluation and related theoretical research of the EMS clothing.
Citation
Xiuchen Wang, Ying Su, Yaping Li, and Zhe Liu, "Computation Model of Shielding Effectiveness of Electromagnetic Shielding Fabrics with Seaming Stitch," Progress In Electromagnetics Research M, Vol. 55, 85-93, 2017.
doi:10.2528/PIERM17011907
References

1. Wang, X. C., Z. Liu, Z. Zhou, Q. He, and H. X. Zeng, "Automatic identification of gray porosity and its influence on shielding effectiveness for electromagnetic shielding fabric," International Journal of Clothing Science and Technology, Vol. 26, No. 8, 424-436, 2014.
doi:10.1108/IJCST-05-2013-0059

2. Liu, Z., Y. L. Yang, X. C. Wang, and Z. Zhou, "Prediction model of shielding effectiveness of electromagnetic shielding fabric with rectangular hole," Progress In Electromagnetics Research C, Vol. 48, 151-157, 2014.
doi:10.2528/PIERC14022103

3. Saravanja, B., K. Malaric, T. Pusic, and D. Ujevic, "Impact of dry cleaning on the electromagnetic shield characteristics of interlining fabric," Fibres & Textiles in Eastern Europe, Vol. 23, No. 1, 104-108, 2015.

4. Silva, L. F., M. F. Lima, C. Helder, and C. Carlos, "Actuation, monitoring and closed-loop control of sewing machine presser foot," Transactions of the Institute of Measurement and Control, Vol. 25, No. 5, 419-432, 2003.
doi:10.1191/0142331203tm0097oa

5. Liu, Z. and X. C. Wang, "Influence of fabric weave type on the effectiveness of electromagnetic shielding woven fabric," Journal of Electromagnetic Waves and Applications, Vol. 26, No. 14-15, 1848-1856, 2012.
doi:10.1080/09205071.2012.717352

6. Wang, X. C., Z. Liu, and Z. Zhou, "Rapid computation model for accurate evaluation of electromagnetic interference shielding effectiveness of fabric with hole based on equivalent coefficient," International Journal of Applied Electromagnetics and Mechanics, Vol. 47, No. 1, 177-185, 2015.

7. Liu, Z. and X. C. Wang, "Relation between shielding effectiveness and tightness of electromagnetic shielding fabric," Journal Industrial Textile, Vol. 43, No. 2, 302-316, 2013.
doi:10.1177/1528083713477440

8. Raiyan Kabir, S. M., B. M. A. Rahman, and K. T. V. Grattan, "Speeding beyond FDTD, perforated finite element time domain method for 3D electromagnetics," Progress In Electromagnetics Research B, Vol. 64, 171-193, 2015.
doi:10.2528/PIERB15081902

9. Sharma, S. K., D. Gupta, J. D. Mulchandani, and R. K. Chaudhary, "A dumbbell-shaped dual-band metamaterial antenna using FDTD technique," Progress In Electromagnetics Research Letters, Vol. 56, 25-30, 2015.
doi:10.2528/PIERL15070106

10. Qian, Z. and Z. J. Chen, Electromagnetic Compatibility Design and Interference Suppression Technology, Zhejiang University Press, Hangzhou, 2000.

11. Liu, Z., Y. P. Li, Z. Pan, Y. Su, and X. C. Wang, "FDTD computation of shielding effectiveness of electromagnetic shielding fabric based on weave region," Journal of Electromagnetic Waves and Applications, 1-14, Jan. 16, 2017.