Vol. 55
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2017-03-27
An Effective SAR Reduction Technique of a Compact Meander Line Antenna for Wearable Applications
By
Progress In Electromagnetics Research M, Vol. 55, 143-152, 2017
Abstract
In this paper a symmetrically structured meander line antenna placed around a T-shaped junction with truncated ground planes is proposed for on-body applications. The designed antenna has a percentage bandwidth of 69.04% covering the GSM 1800 band internationally accepted industrial scientific and medical (ISM) 2.4-2.5 GHz band, 4G LTE band 7 (2.5-2.69 GHz). The antenna is compact in nature with a size of 30×40×1.6 mm3. SAR reduction is achieved without the attachment of any auxiliary unit. It is found that the application of designed truncated ground planes around positions of high electric field (E-field) region is an effective solution in reducing Specific Absorption Rate (SAR) significantly through field cancellation technique. In addition maximum temperature elevation due to electromagnetic wave absorption has also been computed. The antenna is simulated over a homogenous human dry skin model as well as head model. The proposed design is fabricated and measured, and it is found to be compatible for real world applications while considering its miniaturization, radiation patterns and SAR limitations.
Citation
Shankar Bhattacharjee, Monojit Mitra, and Sekhar Ranjan Bhadra Chaudhuri, "An Effective SAR Reduction Technique of a Compact Meander Line Antenna for Wearable Applications," Progress In Electromagnetics Research M, Vol. 55, 143-152, 2017.
doi:10.2528/PIERM16121501
References

1. Behdad, N. and K. Sarabandi, "Bandwidth enhancement and further size reduction of a class of miniaturized slot antennas," IEEE Trans. on Antennas and Propag., Vol. 52, No. 8, 1928-1935, Aug. 2004.
doi:10.1109/TAP.2004.832330

2. Mitra, D., D. Das, and S. R. Bhadra Chaudhuri, "Bandwidth enhancement of microstrip line and CPW-fed asymmetrical slot antennas," Progress In Electromagnetics Research Letters, Vol. 32, 69-79, 2012.
doi:10.2528/PIERL12032204

3. Furuya, K., Y. Taira, and H. Iwasaki, "Wide band wearable antenna for DTV reception," IEEE Int. Symp. AP-S, San Diego, U.S.A, Jul. 2008.

4. Isogai, E., Y. Okano, S. Yamamoto, N. Tamaki, T. Harada, A. Kuramoto, and T. Taura, "Research of wideband wearable antenna integrated on the clothing," ISAP 2008 Proceedings, Taiwan, 2008.

5. Wang, J. and O. Fujiwara, "Reduction of electromagnetic absorption in the human head for portable telephones by a ferrite sheet attachment," IEICE Trans. Commun., Vol. E80B, No. 12, 1810-1815, Dec. 1997.

6. Hwang, J. N. and F. C. Chen, "Reduction of the peak SAR in the human head with metamaterials," IEEE Trans. on Antennas and Propag., Vol. 54, No. 12, 3763-3770, Dec. 2006.
doi:10.1109/TAP.2006.886501

7. Zhu, S. and R. Langley, "Dual-band wearable textile antenna on an EBG substrate," IEEE Trans. on Antennas and Propag., Vol. 57, No. 4, 926-935, Apr. 2009.
doi:10.1109/TAP.2009.2014527

8. Haridim, M., "Use of rod reflectors for SAR reduction in human head," IEEE Trans. on Electromagnetic Compatibility, Vol. 58, No. 1, 40-46, Nov. 2015.
doi:10.1109/TEMC.2015.2500818

9. Mageed, M. A., C. Pelleti, and R. Mittra, "Penta-band PIFA for SAR reduction for mobile and WLAN applications using R-card," IEEE International Symposium on Antennas and Propag. & USNC/URSI National Radio Science Meeting, Vancouver, BC, 2015.

10. Han, K., M. Swaminathan, R. Pulugurtha, H. Sharma, R. Tummala, S. Yang, and V. Nair, "Magneto-dielectric nano composite for Antenna Miniaturization and SAR reduction," IEEE Antennas and Wireless Propag. Letters, Vol. 15, 72-75, May 2015.

11. Garg, R., P. Bhartia, I. Bahl, and A. Ittpiboon, Microstrip Antenna Design Handbook, Artech House Incl., 2001.

12. Tsai, C. L., K. W. Chen, and C. L. Yang, "Implantable wideband low-SAR antenna with C-shaped coupled ground," IEEE Antennas and Wireless Propag. Letters, Vol. 14, 1594-1597, Aug. 2015.
doi:10.1109/LAWP.2015.2413839

13. IEEE Standard for Safety Levels With Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz, IEEE Standard C95.1-2005, 2006.

14. Yang, T., W. A. Davis, W. L. Stutzman, and M. C. Huynh, "Cellular-phone and hearing-aid interaction, an antenna solution," IEEE Antennas and Propag. Mag., Vol. 50, No. 3, 51-65, Jun. 2008.
doi:10.1109/MAP.2008.4563564

15. Calla, O. P. N., A. Singh, A. K. Singh, S. Kumar, and T. Kumar, "Empirical relation for designing the meander line antenna," Proceedings of International conference on Microwave, Jaipur, India, 2008.

16. Andreuccetti, D., R. Fossi, and C. Petrucci, "An internet resource for the calculation of the dielectric properties of body tissues in the frequency range 10 Hz-100 GHz,", Website at http://niremf.ifac.cnr.it/tissprop/.IFAC-CNR, Florence, Italy, 1997, based on data published by C. Gabriel, et al. in 1996.

17. Kritikos, H. N. and H. P. Schwan, "Potential temperature rise induced by electromagnetic field in brain tissues," IEEE Trans. on Biomedical Engg., Vol. 26, No. 1, 29-34, Jan. 1979.
doi:10.1109/TBME.1979.326493

18. Manapati, M. B. and R. S. Kshetrimayum, "SAR reduction in human head from mobile phone radiation using single negative metamaterials," Journal of Electromagnetic Waves and Applications, Vol. 23, 1385-1395, 2009.
doi:10.1163/156939309789108606

19. Ikeuchi, R. and A. Hirata, "Dipole antenna above EBG substrate for local SAR reduction," IEEE Antennas and Wireless Propag. Letters, Vol. 10, 904-906, 2011.
doi:10.1109/LAWP.2011.2167119

20. Choi, W. C., K. J. Kim, Y. J. Yoon, and J. U. Ha, "Inverted-F antenna with modified current distribution for SAR reduction," Antenna Technology International Workshop, 36-39, Sydney, NSW, Australia, 2014.

21. Trajkovikj, J. and A. Skrivervik, "Diminishing SAR for wearable UHF antennas," IEEE Antennas and Wireless Propag. Letters, Vol. 14, 1530-1533, 2015.
doi:10.1109/LAWP.2014.2374423

22. Rosaline, S. I. and S. Raghavan, "A compact dual band antenna with an ENG SRR cover for SAR reduction," Microwave Optical Technology Letter, Vol. 57, 741-747, 2015.
doi:10.1002/mop.28941