Vol. 49
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2016-09-12
Non-Conventional Discretization Grid Based FDTD for EM Wave Propagation in Magnetized Plasma Metallic Photonic Crystal
By
Progress In Electromagnetics Research M, Vol. 49, 211-219, 2016
Abstract
Photonic band gaps of plasma metallic photonic crystals can be tuned dynamically by subjecting it to external magnetic field leading to variety of applications. Dispersion characteristics of 2D photonic crystals are often studied by Finite Difference Time Domain (FDTD) method based on standard Yee's grid discretization schema, in which x- and y-components of fields are defined on different edges of the Yee's cell. However, finite difference equations for electromagnetic wave propagation in magnetized plasma involve interdependence of polarization currents and electric field in a manner that requires both x- and y-components of fields to be evaluated at the same spatial location. A non-conventional discretization technique is presented in which x- and y-components of fields are evaluated at the same spatial location. In this paper analysis of magnetized plasma metallic photonic crystals (PMPC) is presented using the new grid. However, the proposed discretization scheme can be used to introduce magnetized plasmas in any type of structures that can be studied on the basis of standard Yee's grid. For example, topics such as photonic band gap (PBG) cavities based on PMPC, PBG waveguides involving plasma, meta-materials, etc. can be very effectively studied using the approach presented in this paper. Interesting results are found when PMPC is subject to external magnetic field. Several new bands including two dispersion-less flat bands appear and the existing bands with an exception of first band slightly shift upward when PMPC is subjected to an external transverse magnetic field. The location of flat bands and the location and width of forbidden band gaps can be controlled by external magnetic field as well as plasma parameters. New band gaps appearing for lower r/a for magnetized PMPC can be utilized for several applications such as PBG cavity design for gyrotron devices.
Citation
Mayank Kumar Chaudhari, "Non-Conventional Discretization Grid Based FDTD for EM Wave Propagation in Magnetized Plasma Metallic Photonic Crystal," Progress In Electromagnetics Research M, Vol. 49, 211-219, 2016.
doi:10.2528/PIERM16062501
References

1. Yablonovitch, E., "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett., Vol. 58, No. 20, 2059-2062, May 1987.
doi:10.1103/PhysRevLett.58.2059

2. John, S., "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett., Vol. 58, No. 23, 2486-2489, Jun. 1987.
doi:10.1103/PhysRevLett.58.2486

3. Sauvan, C., Lalanne, and J.-Hugonin, "Photonics: tuning holes in photonic-crystal nanocavities," Nature, Vol. 429, No. 6988, 1-154, 2004.
doi:10.1038/nature02602

4. Pan, J., Y. Huo, S. Sandhu, N. Stuhrmann, M. L. Povinelli, J. S. Harris, M. M. Fejer, and S. Fan, "Tuning the coherent interaction in an on-chip photonic-crystal waveguide-resonator system," Appl. Phys. Lett., Vol. 97, No. 10, 101102, 2010.
doi:10.1063/1.3486686

5. Sun, C., C. H. O. Chen, G. Kurian, L. Wei, J. Miller, A. Agarwal, L. S. Peh, and V. Stojanovic, "DSENT - A tool connecting emerging photonics with electronics for opto-electronic networks-on-chip modeling," Proceedings of the 2012 6th IEEE/ACM International Symposium on Networks-on-Chip, NoCS 2012, 201-210, 2012.
doi:10.1109/NOCS.2012.31

6. Inoue, T., M. De Zoysa, T. Asano, and S. Noda, "On-chip integration and high-speed switching of multi-wavelength narrowband thermal emitters," Appl. Phys. Lett., Vol. 108, No. 9, 091101, 2016.
doi:10.1063/1.4942595

7. Bragheri, F., R. Osellame, and R. Ramponi, "Optofluidics for biophotonic applications," IEEE Photonics J., Vol. 4, No. 2, 596-600, 2012.
doi:10.1109/JPHOT.2012.2190725

8. Sayrin, C., C. Clausen, B. Albrecht, Schneeweiss, and A. Rauschenbeutel, "Storage of fiber-guided light in a nanofiber-trapped ensemble of cold atoms," Optica, Vol. 2, No. 4, 353, 2015.
doi:10.1364/OPTICA.2.000353

9. Loncar, M., "Molecular sensors: Cavities lead the way," Nat. Photonics, Vol. 1, No. 10, 565-567, Feb. 2007.
doi:10.1038/nphoton.2007.187

10. Osorio, D. and A. D. Ham, "Spectral reflectance and directional properties of structural coloration in bird plumage," J. Exp. Biol., Vol. 205, No. 14, 2017-2027, 2002.

11. Vigneron, J. and Simonis, "Natural photonic crystals," Phys. B Condens. Matter, Vol. 407, No. 20, 4032-4036, Oct. 2012.
doi:10.1016/j.physb.2011.12.130

12. Forster, J. D., H. Noh, S. F. Liew, V. Saranathan, C. F. Schreck, L. Yang, J. C. Park, R. O. Prum, S. G. J. Mochrie, C. S. O’Hern, H. Cao, and E. R. Dufresne, "Biomimetic isotropic nanostructures for structural coloration," Adv. Mater., Vol. 22, No. 26-27, 2939, Jul. 2010.
doi:10.1002/adma.200903693

13. Fu, T., Z. Yang, Z. Shi, F. Lan, D. Li, and X. Gao, "Dispersion properties of a 2D magnetized plasma metallic photonic crystal," Phys. Plasmas, Vol. 20, No. 2, 023109, 2013.
doi:10.1063/1.4792264

14. Hojo, H. and A. Mase, "Dispersion relation of electromagnetic waves in one-dimensional plasma photonic crystals," J. Plasma Fusion Res., Vol. 80, No. 2, 89-90, 2004.
doi:10.1585/jspf.80.89

15. Qi, L., Z. Yang, X. Gao, F. Lan, and Z. Shi, "Transmission characteristics of electromagnetic waves in plasma photonic crystal by a novel FDTD method," PIERS Proceedings, 1044-1048, Beijing, China, Mar. 23-27, 2009.

16. Ataei, E., M. Sharifian, and N. Z. Bidoki, "Magnetized plasma photonic crystals band gap," J. Plasma Phys., Vol. 80, No. 04, 581-592, Aug. 2014.
doi:10.1017/S0022377814000105

17. Ashutosh and K. Jain, "FDTD analysis of the dispersion characteristics of the metal pbg structures," Progress In Electromagnetics Research B, Vol. 39, 71-88, Feb. 2012.
doi:10.2528/PIERB11120601

18. Umenyi, A. V., K. Miura, and O. Hanaizumi, "Modified finite-difference time-domain method for triangular lattice photonic crystals," J. Light. Technol., Vol. 27, No. 22, 4995-5001, Nov. 2009.
doi:10.1109/JLT.2009.2027449

19. Schneider, J., "Understanding the finite-difference time-domain method," Sch. Electr. Eng. Comput., 2014.

20. Kunz, K. and R. Luebbers, The Finite Difference Time Domain Method for Electromagnetics, Scitech Publishing Inc., 1993.

21. Lewyt, H., "Courant-Friedrichs-Lewy,", Mar. 1967.

22. Pereda, J. A., L. A. Vielva, A. Vegas, and A. Prieto, "Computation of resonant frequencies and quality factors of open dielectric resonators by a combination of the finite-difference time-domain (FDTD) and Prony’s methods," IEEE Microw. Guid. Wave Lett., Vol. 2, No. 11, 431-433, Nov. 1992.
doi:10.1109/75.165633

23. Qiu, M. and S. He, "A nonorthogonal finite-difference time-domain method for computing the band structure of a two-dimensional photonic crystal with dielectric and metallic inclusions," J. Appl. Phys., Vol. 87, No. 12, 8268, 2000.
doi:10.1063/1.373537